Cargando…
Ontogenesis of peptidergic neurons within the genoarchitectonic map of the mouse hypothalamus
During early development, the hypothalamic primordium undergoes anteroposterior and dorsoventral regionalization into diverse progenitor domains, each characterized by a differential gene expression code. The types of neurons produced selectively in each of these distinct progenitor domains are stil...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4290630/ https://www.ncbi.nlm.nih.gov/pubmed/25628541 http://dx.doi.org/10.3389/fnana.2014.00162 |
_version_ | 1782352276205076480 |
---|---|
author | Díaz, Carmen Morales-Delgado, Nicanor Puelles, Luis |
author_facet | Díaz, Carmen Morales-Delgado, Nicanor Puelles, Luis |
author_sort | Díaz, Carmen |
collection | PubMed |
description | During early development, the hypothalamic primordium undergoes anteroposterior and dorsoventral regionalization into diverse progenitor domains, each characterized by a differential gene expression code. The types of neurons produced selectively in each of these distinct progenitor domains are still poorly understood. Recent analysis of the ontogeny of peptidergic neuronal populations expressing Sst, Ghrh, Crh and Trh mRNAs in the mouse hypothalamus showed that these cell types originate from particular dorsoventral domains, characterized by specific combinations of gene markers. Such analysis implies that the differentiation of diverse peptidergic cell populations depends on the molecular environment where they are born. Moreover, a number of these peptidergic neurons were observed to migrate radially and/or tangentially, invading different adult locations, often intermingled with other cell types. This suggests that a developmental approach is absolutely necessary for the understanding of their adult distribution. In this essay, we examine comparatively the ontogenetic hypothalamic topography of twelve additional peptidergic populations documented in the Allen Developmental Mouse Brain Atlas, and discuss shared vs. variant aspects in their apparent origins, migrations and final distribution, in the context of the respective genoarchitectonic backgrounds. This analysis should aid ulterior attempts to explain causally the development of neuronal diversity in the hypothalamus, and contribute to our understanding of its topographic complexity in the adult. |
format | Online Article Text |
id | pubmed-4290630 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-42906302015-01-27 Ontogenesis of peptidergic neurons within the genoarchitectonic map of the mouse hypothalamus Díaz, Carmen Morales-Delgado, Nicanor Puelles, Luis Front Neuroanat Neuroscience During early development, the hypothalamic primordium undergoes anteroposterior and dorsoventral regionalization into diverse progenitor domains, each characterized by a differential gene expression code. The types of neurons produced selectively in each of these distinct progenitor domains are still poorly understood. Recent analysis of the ontogeny of peptidergic neuronal populations expressing Sst, Ghrh, Crh and Trh mRNAs in the mouse hypothalamus showed that these cell types originate from particular dorsoventral domains, characterized by specific combinations of gene markers. Such analysis implies that the differentiation of diverse peptidergic cell populations depends on the molecular environment where they are born. Moreover, a number of these peptidergic neurons were observed to migrate radially and/or tangentially, invading different adult locations, often intermingled with other cell types. This suggests that a developmental approach is absolutely necessary for the understanding of their adult distribution. In this essay, we examine comparatively the ontogenetic hypothalamic topography of twelve additional peptidergic populations documented in the Allen Developmental Mouse Brain Atlas, and discuss shared vs. variant aspects in their apparent origins, migrations and final distribution, in the context of the respective genoarchitectonic backgrounds. This analysis should aid ulterior attempts to explain causally the development of neuronal diversity in the hypothalamus, and contribute to our understanding of its topographic complexity in the adult. Frontiers Media S.A. 2015-01-12 /pmc/articles/PMC4290630/ /pubmed/25628541 http://dx.doi.org/10.3389/fnana.2014.00162 Text en Copyright © 2015 Díaz, Morales-Delgado and Puelles. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Díaz, Carmen Morales-Delgado, Nicanor Puelles, Luis Ontogenesis of peptidergic neurons within the genoarchitectonic map of the mouse hypothalamus |
title | Ontogenesis of peptidergic neurons within the genoarchitectonic map of the mouse hypothalamus |
title_full | Ontogenesis of peptidergic neurons within the genoarchitectonic map of the mouse hypothalamus |
title_fullStr | Ontogenesis of peptidergic neurons within the genoarchitectonic map of the mouse hypothalamus |
title_full_unstemmed | Ontogenesis of peptidergic neurons within the genoarchitectonic map of the mouse hypothalamus |
title_short | Ontogenesis of peptidergic neurons within the genoarchitectonic map of the mouse hypothalamus |
title_sort | ontogenesis of peptidergic neurons within the genoarchitectonic map of the mouse hypothalamus |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4290630/ https://www.ncbi.nlm.nih.gov/pubmed/25628541 http://dx.doi.org/10.3389/fnana.2014.00162 |
work_keys_str_mv | AT diazcarmen ontogenesisofpeptidergicneuronswithinthegenoarchitectonicmapofthemousehypothalamus AT moralesdelgadonicanor ontogenesisofpeptidergicneuronswithinthegenoarchitectonicmapofthemousehypothalamus AT puellesluis ontogenesisofpeptidergicneuronswithinthegenoarchitectonicmapofthemousehypothalamus |