Cargando…
Network-based biomarkers enhance classical approaches to prognostic gene expression signatures
BACKGROUND: Classical approaches to predicting patient clinical outcome via gene expression information are primarily based on differential expression of unrelated genes (single-gene approaches) or genes related by, for example, biologic pathway or function (gene-sets). Recently, network-based appro...
Autores principales: | Barter, Rebecca L, Schramm, Sarah-Jane, Mann, Graham J, Yang, Yee Hwa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4290694/ https://www.ncbi.nlm.nih.gov/pubmed/25521200 http://dx.doi.org/10.1186/1752-0509-8-S4-S5 |
Ejemplares similares
-
VAN: an R package for identifying biologically perturbed networks via differential variability analysis
por: Jayaswal, Vivek, et al.
Publicado: (2013) -
A multi-step classifier addressing cohort heterogeneity improves performance of prognostic biomarkers in three cancer types
por: Patrick, Ellis, et al.
Publicado: (2016) -
Immune expression signatures as candidate prognostic biomarkers of age and gender survival differences in cutaneous melanoma
por: Kim, Yi-Jun, et al.
Publicado: (2020) -
Histological Subtypes Drive Distinct Prognostic Immune Signatures in Classical Hodgkin Lymphoma
por: Lamaison, Claire, et al.
Publicado: (2022) -
From Classic to Modern Prognostic Biomarkers in Patients with Acute Myocardial Infarction
por: Stătescu, Cristian, et al.
Publicado: (2022)