Cargando…
Highly sensitive inference of time-delayed gene regulation by network deconvolution
BACKGROUND: Gene regulatory network (GRN) is a fundamental topic in systems biology. The dynamics of GRN can shed light on the cellular processes, which facilitates the understanding of the mechanisms of diseases when the processes are dysregulated. Accurate reconstruction of GRN could also provide...
Autores principales: | Chen, Haifen, Mundra, Piyushkumar A, Zhao, Li Na, Lin, Feng, Zheng, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4290726/ https://www.ncbi.nlm.nih.gov/pubmed/25521243 http://dx.doi.org/10.1186/1752-0509-8-S4-S6 |
Ejemplares similares
-
Stability of building gene regulatory networks with sparse autoregressive models
por: Rajapakse, Jagath C, et al.
Publicado: (2011) -
Statistical Deconvolution for Inference of Infection Time Series
por: Miller, Andrew C., et al.
Publicado: (2022) -
PIKE-R2P: Protein–protein interaction network-based knowledge embedding with graph neural network for single-cell RNA to protein prediction
por: Dai, Xinnan, et al.
Publicado: (2021) -
Combining Mendelian randomization and network deconvolution for inference of causal networks with GWAS summary data
por: Lin, Zhaotong, et al.
Publicado: (2023) -
Sunglasses to hide behind may also prevent melanoma of the eyes
por: Dhomen, Nathalie, et al.
Publicado: (2021)