Cargando…
Fast cooling in dispersively and dissipatively coupled optomechanics
The cooling performance of an optomechanical system comprising both dispersive and dissipative coupling is studied. Here, we present a scheme to cool a mechanical resonator to its ground state in finite time using a chirped pulse. We show that there is distinct advantage in using the chirp-pulse sch...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4291557/ https://www.ncbi.nlm.nih.gov/pubmed/25582660 http://dx.doi.org/10.1038/srep07745 |
Sumario: | The cooling performance of an optomechanical system comprising both dispersive and dissipative coupling is studied. Here, we present a scheme to cool a mechanical resonator to its ground state in finite time using a chirped pulse. We show that there is distinct advantage in using the chirp-pulse scheme to cool a resonator rapidly. The cooling behaviors of dispersively and dissipatively coupled system is also explored with different types of incident pulses and different coupling strengths. Our scheme is feasible in cooling the resonator for a wide range of the parameter region. |
---|