Cargando…
Vasculopathy associated hyperangiotensinemia mobilizes hematopoietic stem cells/progenitors through endothelial AT(2)R and cytoskeletal dysregulation
Patients in organ failure of vascular origin have increased circulating hematopoietic stem cells and progenitors (HSC/P). Plasma levels of angiotensin II (Ang-II), are commonly increased in vasculopathies. Hyperangiotensinemia results in activation of a very distinct Ang-II receptor set, Rho-family...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4293039/ https://www.ncbi.nlm.nih.gov/pubmed/25574809 http://dx.doi.org/10.1038/ncomms6914 |
Sumario: | Patients in organ failure of vascular origin have increased circulating hematopoietic stem cells and progenitors (HSC/P). Plasma levels of angiotensin II (Ang-II), are commonly increased in vasculopathies. Hyperangiotensinemia results in activation of a very distinct Ang-II receptor set, Rho-family GTPase members, and actin in bone marrow endothelial cells (BMEC) and HSC/P, which results in decreased membrane integrin activation in both BMEC and HSC/P, and in HSC/P de-adhesion and mobilization. The Ang-II effect can be reversed pharmacologically and genetically by inhibiting Ang-II production or signaling through BMEC AT2R, HSCP AT(1)R/AT(2)R or HSC/P RhoA, but not by interfering with other vascular tone mediators. Hyperangiotensinemia and high counts of circulating HSC/P seen in sickle cell disease (SCD) as a result of vascular damage, is significantly decreased by Ang-II inhibitors. Our data define for the first time the role of Ang-II HSC/P traffic regulation and redefine the hematopoietic consequences of anti-angiotensin therapy in SCD. |
---|