Cargando…

Synthesis and corrosion protection properties of poly(o-phenylenediamine) nanofibers

The present study shows a novel method for the synthesis of uniformly-shaped poly(othophenylediamine) (PoPD) nanofibers by chemical oxidative polymerization method for application towards smart corrosion resistance coatings. Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SE...

Descripción completa

Detalles Bibliográficos
Autores principales: Muthirulan, P., Kannan, N., Meenakshisundaram, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4293877/
https://www.ncbi.nlm.nih.gov/pubmed/25685444
http://dx.doi.org/10.1016/j.jare.2012.07.007
Descripción
Sumario:The present study shows a novel method for the synthesis of uniformly-shaped poly(othophenylediamine) (PoPD) nanofibers by chemical oxidative polymerization method for application towards smart corrosion resistance coatings. Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) studies confirm morphology of PoPD with three dimensional (3D) networked dendritic superstructures having average diameter of 50–70 nm and several hundred meters of length. UV–vis and FTIR spectral results shows the formation of PoPD nanofibers containing phenazine ring ladder-structure with benzenoid and quinoid imine units. Thermogravimetric analyses (TGA) of PoPD nanofibers possess good thermal stability. The anti-corrosion behavior of PoPD nanofibers on 316L SS was investigated in 3.5% NaCl solution using potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) measurements. The PoPD coated 316L SS exhibits higher corrosion potential when compared to uncoated specimen. EIS studies, clearly ascertain that PoPD nanofiber coatings exhibits excellent potential barrier to protect the 316L SS against corrosion in 3.5% NaCl.