Cargando…

Initial success of native grasses is contingent on multiple interactions among exotic grass competition, temporal priority, rainfall and site effects

Ecological communities are increasingly being recognized as the products of contemporary drivers and historical legacies that are both biotic and abiotic. In an attempt to unravel multiple layers of ecological contingency, we manipulated (i) competition with exotic annual grasses, (ii) the timing of...

Descripción completa

Detalles Bibliográficos
Autores principales: Young, Truman P., Zefferman, Emily P., Vaughn, Kurt J., Fick, Stephen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4294444/
https://www.ncbi.nlm.nih.gov/pubmed/25480888
http://dx.doi.org/10.1093/aobpla/plu081
Descripción
Sumario:Ecological communities are increasingly being recognized as the products of contemporary drivers and historical legacies that are both biotic and abiotic. In an attempt to unravel multiple layers of ecological contingency, we manipulated (i) competition with exotic annual grasses, (ii) the timing of this competition (temporal priority in arrival/seeding times) and (iii) watering (simulated rainfall) in a restoration-style planting of native perennial grasses. In addition, we replicated this experiment simultaneously at three sites in north-central California. Native perennial grasses had 73–99 % less cover when planted with exotic annuals than when planted alone, but this reduction was greatly ameliorated by planting the natives 2 weeks prior to the exotics. In a drought year, irrigation significantly reduced benefits of early planting so that these benefits resembled those observed in a non-drought year. There were significant differences across the three sites (site effects and interactions) in (i) overall native cover, (ii) the response of natives to competition, (iii) the strength of the temporal priority effect and (iv) the degree to which supplemental watering reduced priority effects. These results reveal the strong multi-layered contingency that underlies even relatively simple communities.