Cargando…
Unsupervised, low latency anomaly detection of algorithmically generated domain names by generative probabilistic modeling
We propose a method for detecting anomalous domain names, with focus on algorithmically generated domain names which are frequently associated with malicious activities such as fast flux service networks, particularly for bot networks (or botnets), malware, and phishing. Our method is based on learn...
Autores principales: | Raghuram, Jayaram, Miller, David J., Kesidis, George |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4294760/ https://www.ncbi.nlm.nih.gov/pubmed/25685511 http://dx.doi.org/10.1016/j.jare.2014.01.001 |
Ejemplares similares
-
Unsupervised anomaly detection with generative adversarial networks in mammography
por: Park, Seungju, et al.
Publicado: (2023) -
Correlation-Aware Deep Generative Model for Unsupervised Anomaly Detection
por: Fan, Haoyi, et al.
Publicado: (2020) -
UMUDGA: A dataset for profiling algorithmically generated domain names in botnet detection
por: Zago, Mattia, et al.
Publicado: (2020) -
Unsupervised Anomaly Detection of Healthcare Providers Using Generative Adversarial Networks
por: Naidoo, Krishnan, et al.
Publicado: (2020) -
Publisher Correction: Unsupervised anomaly detection with generative adversarial networks in mammography
por: Park, Seungju, et al.
Publicado: (2023)