Cargando…

MutT Homolog 1 (MTH1) maintains multiple KRAS-driven pro-malignant pathways

Oncogenic RAS promotes production of reactive oxygen species (ROS), which mediate pro-malignant signaling but can also trigger DNA damage-induced tumor suppression. Thus RAS-driven tumor cells require redox-protective mechanisms to mitigate the damaging aspects of ROS. Here we show that MutT Homolog...

Descripción completa

Detalles Bibliográficos
Autores principales: Patel, Asmita, Burton, Dominick G. A., Halvorsen, Katherine, Balkan, Wayne, Reiner, Teresita, Perez-Stable, Carlos, Cohen, Alexander, Munoz, Anisleidys, Giribaldi, Maria G., Singh, Samer, Robbins, David J., Nguyen, Dao M., Rai, Priyamvada
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4294948/
https://www.ncbi.nlm.nih.gov/pubmed/25023700
http://dx.doi.org/10.1038/onc.2014.195
Descripción
Sumario:Oncogenic RAS promotes production of reactive oxygen species (ROS), which mediate pro-malignant signaling but can also trigger DNA damage-induced tumor suppression. Thus RAS-driven tumor cells require redox-protective mechanisms to mitigate the damaging aspects of ROS. Here we show that MutT Homolog 1 (MTH1), the mammalian 8-oxodGTPase that sanitizes oxidative damage in the nucleotide pool, is important for maintaining several KRAS-driven pro-malignant traits in a nonsmall cell lung carcinoma (NSCLC) model. MTH1 suppression in KRAS-mutant NSCLC cells impairs proliferation and xenograft tumor formation. Furthermore, MTH1 levels modulate KRAS-induced transformation of immortalized lung epithelial cells. MTH1 expression is upregulated by oncogenic KRAS and correlates positively with high KRAS levels in NSCLC human tumors. At a molecular level, in p53-competent KRAS-mutant cells, MTH1 loss provokes DNA damage and induction of oncogene-induced senescence (OIS). In p53-nonfunctional KRAS-mutant cells, MTH1 suppression does not produce DNA damage but induces a reduced proliferative rate and an adaptive decrease in KRAS expression levels. Thus, MTH1 not only enables evasion of oxidative DNA damage and its consequences but can also function as a molecular rheostat for maintaining oncogene expression at optimal levels. Accordingly, our results indicate MTH1 is a novel and critical component of oncogenic KRAS-associated malignancy and its inhibition is likely to yield significant tumor-suppressive outcomes in KRAS-driven tumors.