Cargando…
Identification of Plasmonic Modes in Parabolic Cylinder Geometry by Quasi-Separation of Variables
This paper describes the plasmonic modes in the parabolic cylinder geometry as a theoretical complement to the previous paper (J Phys A 42:185401) that considered the modes in the circular paraboloidal geometry. In order to identify the plasmonic modes in the parabolic cylinder geometry, analytic so...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295033/ https://www.ncbi.nlm.nih.gov/pubmed/25620897 http://dx.doi.org/10.1007/s11468-014-9791-3 |
Sumario: | This paper describes the plasmonic modes in the parabolic cylinder geometry as a theoretical complement to the previous paper (J Phys A 42:185401) that considered the modes in the circular paraboloidal geometry. In order to identify the plasmonic modes in the parabolic cylinder geometry, analytic solutions for surface plasmon polaritons are examined by solving the wave equation for the magnetic field in parabolic cylindrical coordinates using quasi-separation of variables in combination with perturbation methods. The examination of the zeroth-order perturbation equations showed that solutions cannot exist for the parabolic metal wedge but can be obtained for the parabolic metal groove as standing wave solutions indicated by the even and odd symmetries. |
---|