Cargando…

Semi-automatic organelle detection on transmission electron microscopic images

Recent advances in the acquisition of large-scale datasets of transmission electron microscope images have allowed researchers to determine the number and the distribution of subcellular ultrastructures at both the cellular level and the tissue level. For this purpose, it would be very useful to hav...

Descripción completa

Detalles Bibliográficos
Autores principales: Higaki, Takumi, Kutsuna, Natsumaro, Akita, Kae, Sato, Mayuko, Sawaki, Fumie, Kobayashi, Megumi, Nagata, Noriko, Toyooka, Kiminori, Hasezawa, Seiichiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295107/
https://www.ncbi.nlm.nih.gov/pubmed/25589024
http://dx.doi.org/10.1038/srep07794
_version_ 1782352794187988992
author Higaki, Takumi
Kutsuna, Natsumaro
Akita, Kae
Sato, Mayuko
Sawaki, Fumie
Kobayashi, Megumi
Nagata, Noriko
Toyooka, Kiminori
Hasezawa, Seiichiro
author_facet Higaki, Takumi
Kutsuna, Natsumaro
Akita, Kae
Sato, Mayuko
Sawaki, Fumie
Kobayashi, Megumi
Nagata, Noriko
Toyooka, Kiminori
Hasezawa, Seiichiro
author_sort Higaki, Takumi
collection PubMed
description Recent advances in the acquisition of large-scale datasets of transmission electron microscope images have allowed researchers to determine the number and the distribution of subcellular ultrastructures at both the cellular level and the tissue level. For this purpose, it would be very useful to have a computer-assisted system to detect the structures of interest, such as organelles. Using our original image recognition framework CARTA (Clustering-Aided Rapid Training Agent), combined with procedures to highlight and enlarge regions of interest on the image, we have developed a successful method for the semi-automatic detection of plant organelles including mitochondria, amyloplasts, chloroplasts, etioplasts, and Golgi stacks in transmission electron microscope images. Our proposed semi-automatic detection system will be helpful for labelling organelles in the interpretation and/or quantitative analysis of large-scale electron microscope imaging data.
format Online
Article
Text
id pubmed-4295107
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-42951072015-01-27 Semi-automatic organelle detection on transmission electron microscopic images Higaki, Takumi Kutsuna, Natsumaro Akita, Kae Sato, Mayuko Sawaki, Fumie Kobayashi, Megumi Nagata, Noriko Toyooka, Kiminori Hasezawa, Seiichiro Sci Rep Article Recent advances in the acquisition of large-scale datasets of transmission electron microscope images have allowed researchers to determine the number and the distribution of subcellular ultrastructures at both the cellular level and the tissue level. For this purpose, it would be very useful to have a computer-assisted system to detect the structures of interest, such as organelles. Using our original image recognition framework CARTA (Clustering-Aided Rapid Training Agent), combined with procedures to highlight and enlarge regions of interest on the image, we have developed a successful method for the semi-automatic detection of plant organelles including mitochondria, amyloplasts, chloroplasts, etioplasts, and Golgi stacks in transmission electron microscope images. Our proposed semi-automatic detection system will be helpful for labelling organelles in the interpretation and/or quantitative analysis of large-scale electron microscope imaging data. Nature Publishing Group 2015-01-15 /pmc/articles/PMC4295107/ /pubmed/25589024 http://dx.doi.org/10.1038/srep07794 Text en Copyright © 2015, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/
spellingShingle Article
Higaki, Takumi
Kutsuna, Natsumaro
Akita, Kae
Sato, Mayuko
Sawaki, Fumie
Kobayashi, Megumi
Nagata, Noriko
Toyooka, Kiminori
Hasezawa, Seiichiro
Semi-automatic organelle detection on transmission electron microscopic images
title Semi-automatic organelle detection on transmission electron microscopic images
title_full Semi-automatic organelle detection on transmission electron microscopic images
title_fullStr Semi-automatic organelle detection on transmission electron microscopic images
title_full_unstemmed Semi-automatic organelle detection on transmission electron microscopic images
title_short Semi-automatic organelle detection on transmission electron microscopic images
title_sort semi-automatic organelle detection on transmission electron microscopic images
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295107/
https://www.ncbi.nlm.nih.gov/pubmed/25589024
http://dx.doi.org/10.1038/srep07794
work_keys_str_mv AT higakitakumi semiautomaticorganelledetectionontransmissionelectronmicroscopicimages
AT kutsunanatsumaro semiautomaticorganelledetectionontransmissionelectronmicroscopicimages
AT akitakae semiautomaticorganelledetectionontransmissionelectronmicroscopicimages
AT satomayuko semiautomaticorganelledetectionontransmissionelectronmicroscopicimages
AT sawakifumie semiautomaticorganelledetectionontransmissionelectronmicroscopicimages
AT kobayashimegumi semiautomaticorganelledetectionontransmissionelectronmicroscopicimages
AT nagatanoriko semiautomaticorganelledetectionontransmissionelectronmicroscopicimages
AT toyookakiminori semiautomaticorganelledetectionontransmissionelectronmicroscopicimages
AT hasezawaseiichiro semiautomaticorganelledetectionontransmissionelectronmicroscopicimages