Cargando…
Predicting Protein Backbone Chemical Shifts From Cα Coordinates: Extracting High Resolution Experimental Observables from Low Resolution Models
[Image: see text] Given the demonstrated utility of coarse-grained modeling and simulations approaches in studying protein structure and dynamics, developing methods that allow experimental observables to be directly recovered from coarse-grained models is of great importance. In this work, we devel...
Autores principales: | Frank, Aaron T., Law, Sean M., Ahlstrom, Logan S., Brooks, Charles L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295808/ https://www.ncbi.nlm.nih.gov/pubmed/25620895 http://dx.doi.org/10.1021/ct5009125 |
Ejemplares similares
-
A Simple
and Fast Approach for Predicting (1)H and (13)C
Chemical Shifts: Toward Chemical Shift-Guided
Simulations of RNA
por: Frank, Aaron T., et al.
Publicado: (2014) -
Deuterium isotope effects on (15)N backbone chemical shifts in proteins
por: Abildgaard, Jens, et al.
Publicado: (2009) -
Deep Learning to Predict Protein Backbone Structure from High-Resolution Cryo-EM Density Maps
por: Si, Dong, et al.
Publicado: (2020) -
backbone: An R package to extract network backbones
por: Neal, Zachary P.
Publicado: (2022) -
Toward Atomistic Resolution Structure of Phosphatidylcholine
Headgroup and Glycerol Backbone at Different Ambient Conditions†
por: Botan, Alexandru, et al.
Publicado: (2015)