Cargando…
Network-Constrained Group Lasso for High-Dimensional Multinomial Classification with Application to Cancer Subtype Prediction
Classic multinomial logit model, commonly used in multiclass regression problem, is restricted to few predictors and does not take into account the relationship among variables. It has limited use for genomic data, where the number of genomic features far exceeds the sample size. Genomic features su...
Autores principales: | Tian, Xinyu, Wang, Xuefeng, Chen, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295837/ https://www.ncbi.nlm.nih.gov/pubmed/25635165 http://dx.doi.org/10.4137/CIN.S17686 |
Ejemplares similares
-
Bayesian Lasso and multinomial logistic regression on GPU
por: Češnovar, Rok, et al.
Publicado: (2017) -
A constrained multinomial Probit route choice model in the metro network: Formulation, estimation and application
por: Zhang, Yongsheng, et al.
Publicado: (2017) -
Checking for model failure and for prior-data conflict with the constrained multinomial model
por: Englert, Berthold-Georg, et al.
Publicado: (2021) -
The joint lasso: high-dimensional regression for group structured data
por: Dondelinger, Frank, et al.
Publicado: (2018) -
NeuralLasso: Neural Networks Meet Lasso in Genomic Prediction
por: Mathew, Boby, et al.
Publicado: (2022)