Cargando…

Gap junctions composed of connexins 41.8 and 39.4 are essential for colour pattern formation in zebrafish

Interactions between all three pigment cell types are required to form the stripe pattern of adult zebrafish (Danio rerio), but their molecular nature is poorly understood. Mutations in leopard (leo), encoding Connexin 41.8 (Cx41.8), a gap junction subunit, cause a phenotypic series of spotted patte...

Descripción completa

Detalles Bibliográficos
Autores principales: Irion, Uwe, Frohnhöfer, Hans Georg, Krauss, Jana, Çolak Champollion, Tuǧba, Maischein, Hans-Martin, Geiger-Rudolph, Silke, Weiler, Christian, Nüsslein-Volhard, Christiane
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4296512/
https://www.ncbi.nlm.nih.gov/pubmed/25535837
http://dx.doi.org/10.7554/eLife.05125
Descripción
Sumario:Interactions between all three pigment cell types are required to form the stripe pattern of adult zebrafish (Danio rerio), but their molecular nature is poorly understood. Mutations in leopard (leo), encoding Connexin 41.8 (Cx41.8), a gap junction subunit, cause a phenotypic series of spotted patterns. A new dominant allele, leo(tK3), leads to a complete loss of the pattern, suggesting a dominant negative impact on another component of gap junctions. In a genetic screen, we identified this component as Cx39.4 (luchs). Loss-of-function alleles demonstrate that luchs is required for stripe formation in zebrafish; however, the fins are almost not affected. Double mutants and chimeras, which show that leo and luchs are only required in xanthophores and melanophores, but not in iridophores, suggest that both connexins form heteromeric gap junctions. The phenotypes indicate that these promote homotypic interactions between melanophores and xanthophores, respectively, and those cells instruct the patterning of the iridophores. DOI: http://dx.doi.org/10.7554/eLife.05125.001