Cargando…

Photoelastic analysis of stress generated by wires when conventional and self-ligating brackets are used: A pilot study

OBJECTIVE: By means of a photoelastic model, this study analyzed the stress caused on conventional and self-ligating brackets with expanded arch wires. METHOD: Standard brackets were adhered to artificial teeth and a photoelastic model was prepared using the Interlandi 19/12 diagram as base. Success...

Descripción completa

Detalles Bibliográficos
Autores principales: Sobral, Guilherme Caiado, Vedovello, Mário, Degan, Viviane Veroni, Santamaria, Milton
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dental Press International 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4296654/
https://www.ncbi.nlm.nih.gov/pubmed/25715719
http://dx.doi.org/10.1590/2176-9451.19.5.074-078.oar
Descripción
Sumario:OBJECTIVE: By means of a photoelastic model, this study analyzed the stress caused on conventional and self-ligating brackets with expanded arch wires. METHOD: Standard brackets were adhered to artificial teeth and a photoelastic model was prepared using the Interlandi 19/12 diagram as base. Successive activations were made with 0.014-in and 0.018-in rounded cross section Nickel-Titanium wires (NiTi) and 0.019 x 0.025-in rectangular stainless steel wires all of which made on 22/14 Interlandi diagram. The model was observed on a plane polariscope - in a dark field microscope configuration - and photographed at each exchange of wire. Then, they were replaced by self-ligating brackets and the process was repeated. Analysis was qualitative and observed stress location and pattern on both models analyzed. CONCLUSIONS: Results identified greater stress on the region of the apex of premolars in both analyzed models. Upon comparing the stress between models, a greater amount of stress was found in the model with conventional brackets in all of its wires. Therefore, the present pilot study revealed that alignment of wires in self-ligating brackets produced lower stress in periodontal tissues in expansive mechanics.