Cargando…
Predicting outcome in clinically isolated syndrome using machine learning
We aim to determine if machine learning techniques, such as support vector machines (SVMs), can predict the occurrence of a second clinical attack, which leads to the diagnosis of clinically-definite Multiple Sclerosis (CDMS) in patients with a clinically isolated syndrome (CIS), on the basis of sin...
Autores principales: | Wottschel, V., Alexander, D.C., Kwok, P.P., Chard, D.T., Stromillo, M.L., De Stefano, N., Thompson, A.J., Miller, D.H., Ciccarelli, O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4297887/ https://www.ncbi.nlm.nih.gov/pubmed/25610791 http://dx.doi.org/10.1016/j.nicl.2014.11.021 |
Ejemplares similares
-
SVM recursive feature elimination analyses of structural brain MRI predicts near-term relapses in patients with clinically isolated syndromes suggestive of multiple sclerosis
por: Wottschel, Viktor, et al.
Publicado: (2019) -
Patterns of white matter damage are non-random and associated with cognitive function in secondary progressive multiple sclerosis
por: Meijer, K.A., et al.
Publicado: (2016) -
Machine learning-enabled phenotyping for GWAS and TWAS of WUE traits in 869
field-grown sorghum accessions
por: Ferguson, John N, et al.
Publicado: (2021) -
Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data
por: Eshaghi, Arman, et al.
Publicado: (2021) -
Dopamine receptor D(4) (DRD(4)) polymorphisms with reduced functional potency intensify atrophy in syndrome-specific sites of frontotemporal dementia
por: Butler, P.M., et al.
Publicado: (2019)