Cargando…

Cool and warm hybrid white organic light-emitting diode with blue delayed fluorescent emitter both as blue emitter and triplet host

A hybrid white organic light-emitting diode (WOLED) with an external quantum efficiency above 20% was developed using a new blue thermally activated delayed fluorescent material, 4,6-di(9H-carbazol-9-yl)isophthalonitrile (DCzIPN), both as a blue emitter and a host for a yellow phosphorescent emitter...

Descripción completa

Detalles Bibliográficos
Autores principales: Cho, Yong Joo, Yook, Kyoung Soo, Lee, Jun Yeob
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4297969/
https://www.ncbi.nlm.nih.gov/pubmed/25598436
http://dx.doi.org/10.1038/srep07859
Descripción
Sumario:A hybrid white organic light-emitting diode (WOLED) with an external quantum efficiency above 20% was developed using a new blue thermally activated delayed fluorescent material, 4,6-di(9H-carbazol-9-yl)isophthalonitrile (DCzIPN), both as a blue emitter and a host for a yellow phosphorescent emitter. DCzIPN showed high quantum efficiency of 16.4% as a blue emitter and 24.9% as a host for a yellow phosphorescent emitter. The hybrid WOLEDs with the DCzIPN host based yellow emitting layer sandwiched between DCzIPN emitter based blue emitting layers exhibited high external quantum efficiency of 22.9% with a warm white color coordinate of (0.39, 0.43) and quantum efficiency of 21.0% with a cool white color coordinate of (0.31, 0.33) by managing the thickness of the yellow emitting layer.