Cargando…
Colony size is linked to paternity frequency and paternity skew in yellowjacket wasps and hornets
BACKGROUND: The puzzle of the selective benefits of multiple mating and multiple paternity in social insects has been a major focus of research in evolutionary biology. We examine paternity in a clade of social insects, the vespine wasps (the yellowjackets and hornets), which contains species with h...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4298054/ https://www.ncbi.nlm.nih.gov/pubmed/25547876 http://dx.doi.org/10.1186/s12862-014-0277-x |
Sumario: | BACKGROUND: The puzzle of the selective benefits of multiple mating and multiple paternity in social insects has been a major focus of research in evolutionary biology. We examine paternity in a clade of social insects, the vespine wasps (the yellowjackets and hornets), which contains species with high multiple paternity as well as species with single paternity. This group is particularly useful for comparative analyses given the wide interspecific variation in paternity traits despite similar sociobiology and ecology of the species in the genera Vespula, Dolichovespula and Vespa. We describe the paternity of 5 species of yellowjackets (Vespula spp.) and we perform a phylogenetically controlled comparative analysis of relatedness, paternity frequency, paternity skew, colony size, and nest site across 22 vespine taxa. RESULTS: We found moderate multiple paternity in four small-colony Vespula rufa-group species (effective paternity 1.5 – 2.1), and higher multiple paternity in the large-colony Vespula flavopilosa (effective paternity ~3.1). Our comparative analysis shows that colony size, but not nest site, predicts average intracolony relatedness. Underlying this pattern, we found that greater colony size is associated with both higher paternity frequency and reduced paternity skew. CONCLUSIONS: Our results support hypotheses focusing on the enhancement of genetic diversity in species with large colonies, and run counter to the hypothesis that multiple paternity is adaptively maintained due to sperm limitation associated with large colonies. We confirm the patterns observed in taxonomically widespread analyses by comparing closely related species of wasps with similar ecology, behavior and social organization. The vespine wasps may be a useful group for experimental investigation of the benefits of multiple paternity in the future. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12862-014-0277-x) contains supplementary material, which is available to authorized users. |
---|