Cargando…
Modeling skin sensitization potential of mechanistically hard-to-be-classified aniline and phenol compounds with quantum mechanistic properties
BACKGROUND: Advanced structure-activity relationship (SAR) modeling can be used as an alternative tool for identification of skin sensitizers and in improvement of the medical diagnosis and more effective practical measures to reduce the causative chemical exposures. It can also circumvent ethical c...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4298069/ https://www.ncbi.nlm.nih.gov/pubmed/25539579 http://dx.doi.org/10.1186/2050-6511-15-76 |
_version_ | 1782353216936083456 |
---|---|
author | Ouyang, Qin Wang, Lirong Mu, Ying Xie, Xiang-Qun |
author_facet | Ouyang, Qin Wang, Lirong Mu, Ying Xie, Xiang-Qun |
author_sort | Ouyang, Qin |
collection | PubMed |
description | BACKGROUND: Advanced structure-activity relationship (SAR) modeling can be used as an alternative tool for identification of skin sensitizers and in improvement of the medical diagnosis and more effective practical measures to reduce the causative chemical exposures. It can also circumvent ethical concern of using animals in toxicological tests, and reduce time and cost. Compounds with aniline or phenol moieties represent two large classes of frequently skin sensitizing chemicals but exhibiting very variable, and difficult to predict, potency. The mechanisms of action are not well-understood. METHODS: A group of mechanistically hard-to-be-classified aniline and phenol chemicals were collected. An in silico model was established by statistical analysis of quantum descriptors for the determination of the relationship between their chemical structures and skin sensitization potential. The sensitization mechanisms were investigated based on the features of the established model. Then the model was utilized to analyze a subset of FDA approved drugs containing aniline and/or phenol groups for prediction of their skin sensitization potential. RESULTS AND DISCUSSION: A linear discriminant model using the energy of the highest occupied molecular orbital (ϵ(HOMO)) as the descriptor yielded high prediction accuracy. The contribution of ϵ(HOMO) as a major determinant may suggest that autoxidation or free radical binding could be involved. The model was further applied to predict allergic potential of a subset of FDA approved drugs containing aniline and/or phenol moiety. The predictions imply that similar mechanisms (autoxidation or free radical binding) may also play a role in the skin sensitization caused by these drugs. CONCLUSIONS: An accurate and simple quantum mechanistic model has been developed to predict the skin sensitization potential of mechanistically hard-to-be-classified aniline and phenol chemicals. The model could be useful for the skin sensitization potential predictions of a subset of FDA approved drugs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/2050-6511-15-76) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4298069 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-42980692015-01-20 Modeling skin sensitization potential of mechanistically hard-to-be-classified aniline and phenol compounds with quantum mechanistic properties Ouyang, Qin Wang, Lirong Mu, Ying Xie, Xiang-Qun BMC Pharmacol Toxicol Research Article BACKGROUND: Advanced structure-activity relationship (SAR) modeling can be used as an alternative tool for identification of skin sensitizers and in improvement of the medical diagnosis and more effective practical measures to reduce the causative chemical exposures. It can also circumvent ethical concern of using animals in toxicological tests, and reduce time and cost. Compounds with aniline or phenol moieties represent two large classes of frequently skin sensitizing chemicals but exhibiting very variable, and difficult to predict, potency. The mechanisms of action are not well-understood. METHODS: A group of mechanistically hard-to-be-classified aniline and phenol chemicals were collected. An in silico model was established by statistical analysis of quantum descriptors for the determination of the relationship between their chemical structures and skin sensitization potential. The sensitization mechanisms were investigated based on the features of the established model. Then the model was utilized to analyze a subset of FDA approved drugs containing aniline and/or phenol groups for prediction of their skin sensitization potential. RESULTS AND DISCUSSION: A linear discriminant model using the energy of the highest occupied molecular orbital (ϵ(HOMO)) as the descriptor yielded high prediction accuracy. The contribution of ϵ(HOMO) as a major determinant may suggest that autoxidation or free radical binding could be involved. The model was further applied to predict allergic potential of a subset of FDA approved drugs containing aniline and/or phenol moiety. The predictions imply that similar mechanisms (autoxidation or free radical binding) may also play a role in the skin sensitization caused by these drugs. CONCLUSIONS: An accurate and simple quantum mechanistic model has been developed to predict the skin sensitization potential of mechanistically hard-to-be-classified aniline and phenol chemicals. The model could be useful for the skin sensitization potential predictions of a subset of FDA approved drugs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/2050-6511-15-76) contains supplementary material, which is available to authorized users. BioMed Central 2014-12-24 /pmc/articles/PMC4298069/ /pubmed/25539579 http://dx.doi.org/10.1186/2050-6511-15-76 Text en © Ouyang et al.; licensee BioMed Central. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Ouyang, Qin Wang, Lirong Mu, Ying Xie, Xiang-Qun Modeling skin sensitization potential of mechanistically hard-to-be-classified aniline and phenol compounds with quantum mechanistic properties |
title | Modeling skin sensitization potential of mechanistically hard-to-be-classified aniline and phenol compounds with quantum mechanistic properties |
title_full | Modeling skin sensitization potential of mechanistically hard-to-be-classified aniline and phenol compounds with quantum mechanistic properties |
title_fullStr | Modeling skin sensitization potential of mechanistically hard-to-be-classified aniline and phenol compounds with quantum mechanistic properties |
title_full_unstemmed | Modeling skin sensitization potential of mechanistically hard-to-be-classified aniline and phenol compounds with quantum mechanistic properties |
title_short | Modeling skin sensitization potential of mechanistically hard-to-be-classified aniline and phenol compounds with quantum mechanistic properties |
title_sort | modeling skin sensitization potential of mechanistically hard-to-be-classified aniline and phenol compounds with quantum mechanistic properties |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4298069/ https://www.ncbi.nlm.nih.gov/pubmed/25539579 http://dx.doi.org/10.1186/2050-6511-15-76 |
work_keys_str_mv | AT ouyangqin modelingskinsensitizationpotentialofmechanisticallyhardtobeclassifiedanilineandphenolcompoundswithquantummechanisticproperties AT wanglirong modelingskinsensitizationpotentialofmechanisticallyhardtobeclassifiedanilineandphenolcompoundswithquantummechanisticproperties AT muying modelingskinsensitizationpotentialofmechanisticallyhardtobeclassifiedanilineandphenolcompoundswithquantummechanisticproperties AT xiexiangqun modelingskinsensitizationpotentialofmechanisticallyhardtobeclassifiedanilineandphenolcompoundswithquantummechanisticproperties |