Cargando…
Practical Issues in Screening and Variable Selection in Genome-Wide Association Analysis
Variable selection methods play an important role in high-dimensional statistical modeling and analysis. Computational cost and estimation accuracy are the two main concerns for statistical inference from ultrahigh-dimensional data. In particular, genome-wide association studies (GWAS), which focus...
Autores principales: | Hong, Sungyeon, Kim, Yongkang, Park, Taesung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4298256/ https://www.ncbi.nlm.nih.gov/pubmed/25635166 http://dx.doi.org/10.4137/CIN.S16350 |
Ejemplares similares
-
Robust Gene-Gene Interaction Analysis in Genome Wide Association Studies
por: Kim, Yongkang, et al.
Publicado: (2015) -
Issues with data transformation in genome-wide association studies for phenotypic variability
por: Shen, Xia, et al.
Publicado: (2013) -
Selection of important variables by statistical learning in genome-wide association analysis
por: Yang, Wei (Will), et al.
Publicado: (2009) -
HisCoM-mimi: software for hierarchical structural component analysis for miRNA-mRNA integration model for binary phenotypes
por: Kim, Yongkang, et al.
Publicado: (2019) -
Network Graph Analysis of Gene-Gene Interactions in Genome-Wide Association Study Data
por: Lee, Sungyoung, et al.
Publicado: (2012)