Cargando…

Gerosuppression in confluent cells

The most physiological type of cell cycle arrest – namely, contact inhibition in dense culture - is the least densely studied. Despite cell cycle arrest, confluent cells do not become senescent. We recently described that mTOR (target of rapamycin) is inactive in contact-inhibited cells. Therefore,...

Descripción completa

Detalles Bibliográficos
Autores principales: Leontieva, Olga V., Blagosklonny, Mikhail V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4298362/
https://www.ncbi.nlm.nih.gov/pubmed/25585637
Descripción
Sumario:The most physiological type of cell cycle arrest – namely, contact inhibition in dense culture - is the least densely studied. Despite cell cycle arrest, confluent cells do not become senescent. We recently described that mTOR (target of rapamycin) is inactive in contact-inhibited cells. Therefore, conversion from reversible arrest to senescence (geroconversion) is suppressed. I this Perspective, we further extended the gerosuppression model. While causing senescence in regular cell density, etoposide failed to cause senescence in contact-inhibited cells. A transient reactivation of mTOR favored geroconversion in etoposide-treated confluent cells. Like p21, p16 did not cause senescence in high cell density. We discuss that suppression of geroconversion in confluent and contact-inhibited cultures mimics gerosuppression in the organism. We confirmed that levels of p-S6 were low in murine tissues in the organism compared with mouse embryonic fibroblasts in cell culture, whereas p-Akt was reciprocally high in the organism.