Cargando…

High performance organic-inorganic perovskite-optocoupler based on low-voltage and fast response perovskite compound photodetector

Organic-inorganic hybrid photodetectors attract considerable attention because they can combine the advantages of both organic and inorganic systems. Here, a perovskite compound with a broad absorption spectrum and high power conversion efficiency is used as a photosensitive layer in an organic/inor...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Dong, Dong, Guifang, Li, Wenzhe, Wang, Liduo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4298734/
https://www.ncbi.nlm.nih.gov/pubmed/25600830
http://dx.doi.org/10.1038/srep07902
Descripción
Sumario:Organic-inorganic hybrid photodetectors attract considerable attention because they can combine the advantages of both organic and inorganic systems. Here, a perovskite compound with a broad absorption spectrum and high power conversion efficiency is used as a photosensitive layer in an organic/inorganic hybrid heterojunction photodetector with a high and fast response. The high sensitivity exceeding 10(4) is obtained at bias of 0–4 V. Using a tandem organic light-emitting diode (OLED) as the light source, we fabricated an optocoupler device. The optocoupler achieved a maximum photoresponsivity of 1.0 A W(−1) at 341.3 μWcm(−2) at an input voltage of 6 V. The device also exhibits rapid response times of τ(rise) ~ 20 μs and τ(fall) ~ 17 μs; as well as a high current transfer ratio (CTR) of 28.2%. After applying an amplification circuit, the CTR of the optocoupler increases to 263.3%, which is comparable with that of commercial inorganic optocouplers. The developed hybrid optocoupler thus shows great promise for use in photonics.