Cargando…
Human oral cells’ response to different endodontic restorative materials: an in vitro study
INTRODUCTION: The aim of this study was to compare the biological interaction of human osteoblasts and cells of the human periodontal ligament (PDL) with different endodontic restorative material as Mineral Trioxide Aggregate (MTA), Biodentine, amalgam and composite over a time period of 20 days. MA...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4298870/ https://www.ncbi.nlm.nih.gov/pubmed/25533283 http://dx.doi.org/10.1186/s13005-014-0055-4 |
Sumario: | INTRODUCTION: The aim of this study was to compare the biological interaction of human osteoblasts and cells of the human periodontal ligament (PDL) with different endodontic restorative material as Mineral Trioxide Aggregate (MTA), Biodentine, amalgam and composite over a time period of 20 days. MATERIALS AND METHODS: Human PDL cells and osteoblasts were harvested, cultured and according to standardized protocols. The cell populations were characterized with the corresponding surface markers following standardized procedures. The specimens were produced with special regard to constant dimensions and volume in the different groups. Cell attachment and proliferation were evaluated morphologically after Richardson staining and cell count was performed after 1d, 8d, 13d and 20d. All experiments were performed in triplets. The results were statistically analyzed using the ANOVA- and Tukey-test (p < 0.05). RESULTS: Morphological analysis proved good proliferation and cell attachment in both cements. A remarkable result was the organized spreading and parallel alignment of the PDL cells in contact with MTA and especially Biodentine (cells maturing in a second cell layer crossway to the first one). From 8d onward Biodentine showed the highest quantity of PDL cells (p < 0.05). Biodentine and MTA resulted in a significantly higher cell density in osteoblast and PDL cell culture. The other groups showed a lower PDL cell density from 8d and a lower osteoblast cell density from 13d when compared to control and cement samples (p < 0.05). CONCLUSIONS: MTA and Biodentine showed a good biocompatibility in contact with the human osteoblasts and cells of the periodontal ligament. Regarding cell survival and proliferation particularly of PDL cells Biodentine showed good results and can be considered as a well-tolerated bioactive endodontic material. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13005-014-0055-4) contains supplementary material, which is available to authorized users. |
---|