Cargando…
Evoked EMG versus Muscle Torque during Fatiguing Functional Electrical Stimulation-Evoked Muscle Contractions and Short-Term Recovery in Individuals with Spinal Cord Injury
This study investigated whether the relationship between muscle torque and m-waves remained constant after short recovery periods, between repeated intervals of isometric muscle contractions induced by functional electrical stimulation (FES). Eight subjects with spinal cord injury (SCI) were recruit...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4299045/ https://www.ncbi.nlm.nih.gov/pubmed/25479324 http://dx.doi.org/10.3390/s141222907 |
_version_ | 1782353344969310208 |
---|---|
author | Estigoni, Eduardo H. Fornusek, Che Hamzaid, Nur Azah Hasnan, Nazirah Smith, Richard M. Davis, Glen M. |
author_facet | Estigoni, Eduardo H. Fornusek, Che Hamzaid, Nur Azah Hasnan, Nazirah Smith, Richard M. Davis, Glen M. |
author_sort | Estigoni, Eduardo H. |
collection | PubMed |
description | This study investigated whether the relationship between muscle torque and m-waves remained constant after short recovery periods, between repeated intervals of isometric muscle contractions induced by functional electrical stimulation (FES). Eight subjects with spinal cord injury (SCI) were recruited for the study. All subjects had their quadriceps muscles group stimulated during three sessions of isometric contractions separated by 5 min of recovery. The evoked-electromyographic (eEMG) signals, as well as the produced torque, were synchronously acquired during the contractions and during short FES bursts applied during the recovery intervals. All analysed m-wave variables changed progressively throughout the three contractions, even though the same muscle torque was generated. The peak to peak amplitude (PtpA), and the m-wave area (Area) were significantly increased, while the time between the stimulus artefact and the positive peak (PosT) were substantially reduced when the muscles became fatigued. In addition, all m-wave variables recovered faster and to a greater extent than did torque after the recovery intervals. We concluded that rapid recovery intervals between FES-evoked exercise sessions can radically interfere in the use of m-waves as a proxy for torque estimation in individuals with SCI. This needs to be further investigated, in addition to seeking a better understanding of the mechanisms of muscle fatigue and recovery. |
format | Online Article Text |
id | pubmed-4299045 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-42990452015-01-26 Evoked EMG versus Muscle Torque during Fatiguing Functional Electrical Stimulation-Evoked Muscle Contractions and Short-Term Recovery in Individuals with Spinal Cord Injury Estigoni, Eduardo H. Fornusek, Che Hamzaid, Nur Azah Hasnan, Nazirah Smith, Richard M. Davis, Glen M. Sensors (Basel) Article This study investigated whether the relationship between muscle torque and m-waves remained constant after short recovery periods, between repeated intervals of isometric muscle contractions induced by functional electrical stimulation (FES). Eight subjects with spinal cord injury (SCI) were recruited for the study. All subjects had their quadriceps muscles group stimulated during three sessions of isometric contractions separated by 5 min of recovery. The evoked-electromyographic (eEMG) signals, as well as the produced torque, were synchronously acquired during the contractions and during short FES bursts applied during the recovery intervals. All analysed m-wave variables changed progressively throughout the three contractions, even though the same muscle torque was generated. The peak to peak amplitude (PtpA), and the m-wave area (Area) were significantly increased, while the time between the stimulus artefact and the positive peak (PosT) were substantially reduced when the muscles became fatigued. In addition, all m-wave variables recovered faster and to a greater extent than did torque after the recovery intervals. We concluded that rapid recovery intervals between FES-evoked exercise sessions can radically interfere in the use of m-waves as a proxy for torque estimation in individuals with SCI. This needs to be further investigated, in addition to seeking a better understanding of the mechanisms of muscle fatigue and recovery. MDPI 2014-12-03 /pmc/articles/PMC4299045/ /pubmed/25479324 http://dx.doi.org/10.3390/s141222907 Text en © 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Estigoni, Eduardo H. Fornusek, Che Hamzaid, Nur Azah Hasnan, Nazirah Smith, Richard M. Davis, Glen M. Evoked EMG versus Muscle Torque during Fatiguing Functional Electrical Stimulation-Evoked Muscle Contractions and Short-Term Recovery in Individuals with Spinal Cord Injury |
title | Evoked EMG versus Muscle Torque during Fatiguing Functional Electrical Stimulation-Evoked Muscle Contractions and Short-Term Recovery in Individuals with Spinal Cord Injury |
title_full | Evoked EMG versus Muscle Torque during Fatiguing Functional Electrical Stimulation-Evoked Muscle Contractions and Short-Term Recovery in Individuals with Spinal Cord Injury |
title_fullStr | Evoked EMG versus Muscle Torque during Fatiguing Functional Electrical Stimulation-Evoked Muscle Contractions and Short-Term Recovery in Individuals with Spinal Cord Injury |
title_full_unstemmed | Evoked EMG versus Muscle Torque during Fatiguing Functional Electrical Stimulation-Evoked Muscle Contractions and Short-Term Recovery in Individuals with Spinal Cord Injury |
title_short | Evoked EMG versus Muscle Torque during Fatiguing Functional Electrical Stimulation-Evoked Muscle Contractions and Short-Term Recovery in Individuals with Spinal Cord Injury |
title_sort | evoked emg versus muscle torque during fatiguing functional electrical stimulation-evoked muscle contractions and short-term recovery in individuals with spinal cord injury |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4299045/ https://www.ncbi.nlm.nih.gov/pubmed/25479324 http://dx.doi.org/10.3390/s141222907 |
work_keys_str_mv | AT estigonieduardoh evokedemgversusmuscletorqueduringfatiguingfunctionalelectricalstimulationevokedmusclecontractionsandshorttermrecoveryinindividualswithspinalcordinjury AT fornusekche evokedemgversusmuscletorqueduringfatiguingfunctionalelectricalstimulationevokedmusclecontractionsandshorttermrecoveryinindividualswithspinalcordinjury AT hamzaidnurazah evokedemgversusmuscletorqueduringfatiguingfunctionalelectricalstimulationevokedmusclecontractionsandshorttermrecoveryinindividualswithspinalcordinjury AT hasnannazirah evokedemgversusmuscletorqueduringfatiguingfunctionalelectricalstimulationevokedmusclecontractionsandshorttermrecoveryinindividualswithspinalcordinjury AT smithrichardm evokedemgversusmuscletorqueduringfatiguingfunctionalelectricalstimulationevokedmusclecontractionsandshorttermrecoveryinindividualswithspinalcordinjury AT davisglenm evokedemgversusmuscletorqueduringfatiguingfunctionalelectricalstimulationevokedmusclecontractionsandshorttermrecoveryinindividualswithspinalcordinjury |