Cargando…
Correlated Spatio-Temporal Data Collection in Wireless Sensor Networks Based on Low Rank Matrix Approximation and Optimized Node Sampling
The emerging low rank matrix approximation (LRMA) method provides an energy efficient scheme for data collection in wireless sensor networks (WSNs) by randomly sampling a subset of sensor nodes for data sensing. However, the existing LRMA based methods generally underutilize the spatial or temporal...
Autores principales: | Piao, Xinglin, Hu, Yongli, Sun, Yanfeng, Yin, Baocai, Gao, Junbin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4299056/ https://www.ncbi.nlm.nih.gov/pubmed/25490583 http://dx.doi.org/10.3390/s141223137 |
Ejemplares similares
-
RSS Fingerprint Based Indoor Localization Using Sparse Representation with Spatio-Temporal Constraint
por: Piao, Xinglin, et al.
Publicado: (2016) -
Lower bounds for the low-rank matrix approximation
por: Li, Jicheng, et al.
Publicado: (2017) -
Data Collection Based on Opportunistic Node Connections in Wireless Sensor Networks
por: Yang, Guisong, et al.
Publicado: (2018) -
Low rank matrix approximation using the Lanczos bi-diagonalization process
por: Simon, H D, et al.
Publicado: (1997) -
Application of Neurocomputing for Data Approximation and Classification in Wireless Sensor Networks
por: Jabbari, Amir, et al.
Publicado: (2009)