Cargando…

Mapping and analysis of a novel candidate Fusarium wilt resistance gene FOC1 in Brassica oleracea

BACKGROUND: Cabbage Fusarium wilt is a major disease worldwide that can cause severe yield loss in cabbage (Brassica olerecea). Although markers linked to the resistance gene FOC1 have been identified, no candidate gene for it has been determined so far. In this study, we report the fine mapping and...

Descripción completa

Detalles Bibliográficos
Autores principales: Lv, Honghao, Fang, Zhiyuan, Yang, Limei, Zhang, Yangyong, Wang, Qingbiao, Liu, Yumei, Zhuang, Mu, Yang, Yuhong, Xie, Bingyan, Liu, Bo, Liu, Jisheng, Kang, Jungen, Wang, Xiaowu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4299151/
https://www.ncbi.nlm.nih.gov/pubmed/25495687
http://dx.doi.org/10.1186/1471-2164-15-1094
_version_ 1782353365757329408
author Lv, Honghao
Fang, Zhiyuan
Yang, Limei
Zhang, Yangyong
Wang, Qingbiao
Liu, Yumei
Zhuang, Mu
Yang, Yuhong
Xie, Bingyan
Liu, Bo
Liu, Jisheng
Kang, Jungen
Wang, Xiaowu
author_facet Lv, Honghao
Fang, Zhiyuan
Yang, Limei
Zhang, Yangyong
Wang, Qingbiao
Liu, Yumei
Zhuang, Mu
Yang, Yuhong
Xie, Bingyan
Liu, Bo
Liu, Jisheng
Kang, Jungen
Wang, Xiaowu
author_sort Lv, Honghao
collection PubMed
description BACKGROUND: Cabbage Fusarium wilt is a major disease worldwide that can cause severe yield loss in cabbage (Brassica olerecea). Although markers linked to the resistance gene FOC1 have been identified, no candidate gene for it has been determined so far. In this study, we report the fine mapping and analysis of a candidate gene for FOC1 using a double haploid (DH) population with 160 lines and a F(2) population of 4000 individuals derived from the same parental lines. RESULTS: We confirmed that the resistance to Fusarium wilt was controlled by a single dominant gene based on the resistance segregation ratio of the two populations. Using InDel primers designed from whole-genome re-sequencing data for the two parental lines (the resistant inbred-line 99–77 and the highly susceptible line 99–91) and the DH population, we mapped the resistance gene to a 382-kb genomic region on chromosome C06. Using the F(2) population, we narrowed the region to an 84-kb interval that harbored ten genes, including four probable resistance genes (R genes): Bol037156, Bol037157, Bol037158 and Bol037161 according to the gene annotations from BRAD, the genomic database for B. oleracea. After correcting the model of the these genes, we re-predicted two R genes in the target region: re-Bol037156 and re-Bol0371578. The latter was excluded after we compared the two genes’ sequences between ten resistant materials and ten susceptible materials. For re-Bol037156, we found high identity among the sequences of the resistant lines, while among the susceptible lines, there were two types of InDels (a 1-bp insertion and a 10-bp deletion), each of which caused a frameshift and terminating mutation in the cDNA sequences. Further sequence analysis of the two InDel loci from 80 lines (40 resistant and 40 susceptible) also showed that all 40 R lines had no InDel mutation while 39 out of 40 S lines matched the two types of loci. Thus re-Bol037156 was identified as a likely candidate gene for FOC1 in cabbage. CONCLUSIONS: This work may lay the foundation for marker-assisted selection as well as for further function analysis of the FOC1 gene.
format Online
Article
Text
id pubmed-4299151
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-42991512015-01-21 Mapping and analysis of a novel candidate Fusarium wilt resistance gene FOC1 in Brassica oleracea Lv, Honghao Fang, Zhiyuan Yang, Limei Zhang, Yangyong Wang, Qingbiao Liu, Yumei Zhuang, Mu Yang, Yuhong Xie, Bingyan Liu, Bo Liu, Jisheng Kang, Jungen Wang, Xiaowu BMC Genomics Research Article BACKGROUND: Cabbage Fusarium wilt is a major disease worldwide that can cause severe yield loss in cabbage (Brassica olerecea). Although markers linked to the resistance gene FOC1 have been identified, no candidate gene for it has been determined so far. In this study, we report the fine mapping and analysis of a candidate gene for FOC1 using a double haploid (DH) population with 160 lines and a F(2) population of 4000 individuals derived from the same parental lines. RESULTS: We confirmed that the resistance to Fusarium wilt was controlled by a single dominant gene based on the resistance segregation ratio of the two populations. Using InDel primers designed from whole-genome re-sequencing data for the two parental lines (the resistant inbred-line 99–77 and the highly susceptible line 99–91) and the DH population, we mapped the resistance gene to a 382-kb genomic region on chromosome C06. Using the F(2) population, we narrowed the region to an 84-kb interval that harbored ten genes, including four probable resistance genes (R genes): Bol037156, Bol037157, Bol037158 and Bol037161 according to the gene annotations from BRAD, the genomic database for B. oleracea. After correcting the model of the these genes, we re-predicted two R genes in the target region: re-Bol037156 and re-Bol0371578. The latter was excluded after we compared the two genes’ sequences between ten resistant materials and ten susceptible materials. For re-Bol037156, we found high identity among the sequences of the resistant lines, while among the susceptible lines, there were two types of InDels (a 1-bp insertion and a 10-bp deletion), each of which caused a frameshift and terminating mutation in the cDNA sequences. Further sequence analysis of the two InDel loci from 80 lines (40 resistant and 40 susceptible) also showed that all 40 R lines had no InDel mutation while 39 out of 40 S lines matched the two types of loci. Thus re-Bol037156 was identified as a likely candidate gene for FOC1 in cabbage. CONCLUSIONS: This work may lay the foundation for marker-assisted selection as well as for further function analysis of the FOC1 gene. BioMed Central 2014-12-12 /pmc/articles/PMC4299151/ /pubmed/25495687 http://dx.doi.org/10.1186/1471-2164-15-1094 Text en © Lv et al.; licensee BioMed Central. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Lv, Honghao
Fang, Zhiyuan
Yang, Limei
Zhang, Yangyong
Wang, Qingbiao
Liu, Yumei
Zhuang, Mu
Yang, Yuhong
Xie, Bingyan
Liu, Bo
Liu, Jisheng
Kang, Jungen
Wang, Xiaowu
Mapping and analysis of a novel candidate Fusarium wilt resistance gene FOC1 in Brassica oleracea
title Mapping and analysis of a novel candidate Fusarium wilt resistance gene FOC1 in Brassica oleracea
title_full Mapping and analysis of a novel candidate Fusarium wilt resistance gene FOC1 in Brassica oleracea
title_fullStr Mapping and analysis of a novel candidate Fusarium wilt resistance gene FOC1 in Brassica oleracea
title_full_unstemmed Mapping and analysis of a novel candidate Fusarium wilt resistance gene FOC1 in Brassica oleracea
title_short Mapping and analysis of a novel candidate Fusarium wilt resistance gene FOC1 in Brassica oleracea
title_sort mapping and analysis of a novel candidate fusarium wilt resistance gene foc1 in brassica oleracea
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4299151/
https://www.ncbi.nlm.nih.gov/pubmed/25495687
http://dx.doi.org/10.1186/1471-2164-15-1094
work_keys_str_mv AT lvhonghao mappingandanalysisofanovelcandidatefusariumwiltresistancegenefoc1inbrassicaoleracea
AT fangzhiyuan mappingandanalysisofanovelcandidatefusariumwiltresistancegenefoc1inbrassicaoleracea
AT yanglimei mappingandanalysisofanovelcandidatefusariumwiltresistancegenefoc1inbrassicaoleracea
AT zhangyangyong mappingandanalysisofanovelcandidatefusariumwiltresistancegenefoc1inbrassicaoleracea
AT wangqingbiao mappingandanalysisofanovelcandidatefusariumwiltresistancegenefoc1inbrassicaoleracea
AT liuyumei mappingandanalysisofanovelcandidatefusariumwiltresistancegenefoc1inbrassicaoleracea
AT zhuangmu mappingandanalysisofanovelcandidatefusariumwiltresistancegenefoc1inbrassicaoleracea
AT yangyuhong mappingandanalysisofanovelcandidatefusariumwiltresistancegenefoc1inbrassicaoleracea
AT xiebingyan mappingandanalysisofanovelcandidatefusariumwiltresistancegenefoc1inbrassicaoleracea
AT liubo mappingandanalysisofanovelcandidatefusariumwiltresistancegenefoc1inbrassicaoleracea
AT liujisheng mappingandanalysisofanovelcandidatefusariumwiltresistancegenefoc1inbrassicaoleracea
AT kangjungen mappingandanalysisofanovelcandidatefusariumwiltresistancegenefoc1inbrassicaoleracea
AT wangxiaowu mappingandanalysisofanovelcandidatefusariumwiltresistancegenefoc1inbrassicaoleracea