Cargando…

New “Tau-Leap” Strategy for Accelerated Stochastic Simulation

The “Tau-Leap” strategy for stochastic simulations of chemical reaction systems due to Gillespie and co-workers has had considerable impact on various applications. This strategy is reexamined with Chebyshev’s inequality for random variables as it provides a rigorous probabilistic basis for a measur...

Descripción completa

Detalles Bibliográficos
Autores principales: Ramkrishna, Doraiswami, Shu, Che-Chi, Tran, Vu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2014
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4299402/
https://www.ncbi.nlm.nih.gov/pubmed/25620846
http://dx.doi.org/10.1021/ie502929q
_version_ 1782353386522279936
author Ramkrishna, Doraiswami
Shu, Che-Chi
Tran, Vu
author_facet Ramkrishna, Doraiswami
Shu, Che-Chi
Tran, Vu
author_sort Ramkrishna, Doraiswami
collection PubMed
description The “Tau-Leap” strategy for stochastic simulations of chemical reaction systems due to Gillespie and co-workers has had considerable impact on various applications. This strategy is reexamined with Chebyshev’s inequality for random variables as it provides a rigorous probabilistic basis for a measured τ-leap thus adding significantly to simulation efficiency. It is also shown that existing strategies for simulation times have no probabilistic assurance that they satisfy the τ-leap criterion while the use of Chebyshev’s inequality leads to a specified degree of certainty with which the τ-leap criterion is satisfied. This reduces the loss of sample paths which do not comply with the τ-leap criterion. The performance of the present algorithm is assessed, with respect to one discussed by Cao et al. (J. Chem. Phys.2006, 124, 044109), a second pertaining to binomial leap (Tian and Burrage J. Chem. Phys.2004, 121, 10356; Chatterjee et al. J. Chem. Phys.2005, 122, 024112; Peng et al. J. Chem. Phys.2007, 126, 224109), and a third regarding the midpoint Poisson leap (Peng et al., 2007; Gillespie J. Chem. Phys.2001, 115, 1716). The performance assessment is made by estimating the error in the histogram measured against that obtained with the so-called stochastic simulation algorithm. It is shown that the current algorithm displays notably less histogram error than its predecessor for a fixed computation time and, conversely, less computation time for a fixed accuracy. This computational advantage is an asset in repetitive calculations essential for modeling stochastic systems. The importance of stochastic simulations is derived from diverse areas of application in physical and biological sciences, process systems, and economics, etc. Computational improvements such as those reported herein are therefore of considerable significance.
format Online
Article
Text
id pubmed-4299402
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-42994022015-09-22 New “Tau-Leap” Strategy for Accelerated Stochastic Simulation Ramkrishna, Doraiswami Shu, Che-Chi Tran, Vu Ind Eng Chem Res The “Tau-Leap” strategy for stochastic simulations of chemical reaction systems due to Gillespie and co-workers has had considerable impact on various applications. This strategy is reexamined with Chebyshev’s inequality for random variables as it provides a rigorous probabilistic basis for a measured τ-leap thus adding significantly to simulation efficiency. It is also shown that existing strategies for simulation times have no probabilistic assurance that they satisfy the τ-leap criterion while the use of Chebyshev’s inequality leads to a specified degree of certainty with which the τ-leap criterion is satisfied. This reduces the loss of sample paths which do not comply with the τ-leap criterion. The performance of the present algorithm is assessed, with respect to one discussed by Cao et al. (J. Chem. Phys.2006, 124, 044109), a second pertaining to binomial leap (Tian and Burrage J. Chem. Phys.2004, 121, 10356; Chatterjee et al. J. Chem. Phys.2005, 122, 024112; Peng et al. J. Chem. Phys.2007, 126, 224109), and a third regarding the midpoint Poisson leap (Peng et al., 2007; Gillespie J. Chem. Phys.2001, 115, 1716). The performance assessment is made by estimating the error in the histogram measured against that obtained with the so-called stochastic simulation algorithm. It is shown that the current algorithm displays notably less histogram error than its predecessor for a fixed computation time and, conversely, less computation time for a fixed accuracy. This computational advantage is an asset in repetitive calculations essential for modeling stochastic systems. The importance of stochastic simulations is derived from diverse areas of application in physical and biological sciences, process systems, and economics, etc. Computational improvements such as those reported herein are therefore of considerable significance. American Chemical Society 2014-09-22 2014-12-10 /pmc/articles/PMC4299402/ /pubmed/25620846 http://dx.doi.org/10.1021/ie502929q Text en Copyright © 2014 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Ramkrishna, Doraiswami
Shu, Che-Chi
Tran, Vu
New “Tau-Leap” Strategy for Accelerated Stochastic Simulation
title New “Tau-Leap” Strategy for Accelerated Stochastic Simulation
title_full New “Tau-Leap” Strategy for Accelerated Stochastic Simulation
title_fullStr New “Tau-Leap” Strategy for Accelerated Stochastic Simulation
title_full_unstemmed New “Tau-Leap” Strategy for Accelerated Stochastic Simulation
title_short New “Tau-Leap” Strategy for Accelerated Stochastic Simulation
title_sort new “tau-leap” strategy for accelerated stochastic simulation
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4299402/
https://www.ncbi.nlm.nih.gov/pubmed/25620846
http://dx.doi.org/10.1021/ie502929q
work_keys_str_mv AT ramkrishnadoraiswami newtauleapstrategyforacceleratedstochasticsimulation
AT shuchechi newtauleapstrategyforacceleratedstochasticsimulation
AT tranvu newtauleapstrategyforacceleratedstochasticsimulation