Cargando…
Friend retrovirus drives cytotoxic effectors through Toll-like receptor 3
BACKGROUND: Pathogen recognition drives host defense towards viral infections. Specific groups rather than single members of the protein family of pattern recognition receptors (PRRs) such as membrane spanning Toll-like receptors (TLRs) and cytosolic helicases might mediate sensing of replication in...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4299798/ https://www.ncbi.nlm.nih.gov/pubmed/25539593 http://dx.doi.org/10.1186/s12977-014-0126-4 |
Sumario: | BACKGROUND: Pathogen recognition drives host defense towards viral infections. Specific groups rather than single members of the protein family of pattern recognition receptors (PRRs) such as membrane spanning Toll-like receptors (TLRs) and cytosolic helicases might mediate sensing of replication intermediates of a specific virus species. TLR7 mediates host sensing of retroviruses and could significantly influence retrovirus-specific antibody responses. However, the origin of efficient cell-mediated immunity towards retroviruses is unknown. Double-stranded RNA intermediates produced during retroviral replication are good candidates for immune stimulatory viral products. Thus, we considered TLR3 as primer of cell-mediated immunity against retroviruses in vivo. RESULTS: Infection of mice deficient in TLR3 (TLR3(−/−)) with Friend retrovirus (FV) complex revealed higher viral loads during acute retroviral infection compared to wild type mice. TLR3(−/−) mice exhibited significantly lower expression levels of type I interferons (IFNs) and IFN-stimulated genes like Pkr or Ifi44, as well as reduced numbers of activated myeloid dendritic cells (DCs) (CD86(+) and MHC-II(+)). DCs generated from FV-infected TLR3(−/−) mice were less capable of priming virus-specific CD8(+) T cell proliferation. Moreover, cytotoxicity of natural killer (NK) cells as well as CD8(+) T cells were reduced in vitro and in vivo, respectively, in FV-infected TLR3(-/-) mice. CONCLUSIONS: TLR3 mediates antiretroviral cytotoxic NK cell and CD8(+) T cell activity in vivo. Our findings qualify TLR3 as target of immune therapy against retroviral infections. |
---|