Cargando…

Connectivity supporting attention in children with attention deficit hyperactivity disorder

Intra-subject variability (ISV) is the most consistent behavioral deficit in Attention Deficit Hyperactivity Disorder (ADHD). ISV may be associated with networks involved in sustaining task control (cingulo-opercular network: CON) and self-reflective lapses of attention (default mode network: DMN)....

Descripción completa

Detalles Bibliográficos
Autores principales: Barber, Anita D., Jacobson, Lisa A., Wexler, Joanna L., Nebel, Mary Beth, Caffo, Brian S., Pekar, James J., Mostofsky, Stewart H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4299959/
https://www.ncbi.nlm.nih.gov/pubmed/25610768
http://dx.doi.org/10.1016/j.nicl.2014.11.011
Descripción
Sumario:Intra-subject variability (ISV) is the most consistent behavioral deficit in Attention Deficit Hyperactivity Disorder (ADHD). ISV may be associated with networks involved in sustaining task control (cingulo-opercular network: CON) and self-reflective lapses of attention (default mode network: DMN). The current study examined whether connectivity supporting attentional control is atypical in children with ADHD. Group differences in full-brain connection strength and brain–behavior associations with attentional control measures were examined for the late-developing CON and DMN in 50 children with ADHD and 50 typically-developing (TD) controls (ages 8–12 years). Children with ADHD had hyper-connectivity both within the CON and within the DMN. Full-brain behavioral associations were found for a number of between-network connections. Across both groups, more anti-correlation between DMN and occipital cortex supported better attentional control. However, in the TD group, this brain–behavior association was stronger and occurred for a more extensive set of DMN–occipital connections. Differential support for attentional control between the two groups occurred with a number of CON–DMN connections. For all CON–DMN connections identified, increased between-network anti-correlation was associated with better attentional control for the ADHD group, but worse attentional control in the TD group. A number of between-network connections with the medial frontal cortex, in particular, showed this relationship. Follow-up analyses revealed that these associations were specific to attentional control and were not due to individual differences in working memory, IQ, motor control, age, or scan motion. While CON–DMN anti-correlation is associated with improved attention in ADHD, other circuitry supports improved attention in TD children. Greater CON–DMN anti-correlation supported better attentional control in children with ADHD, but worse attentional control in TD children. On the other hand, greater DMN–occipital anti-correlation supported better attentional control in TD children.