Cargando…

Effect of diameter of nanoparticles and capture cross-section library on macroscopic dose enhancement in boron neutron capture therapy

PURPOSE: The aim of this study is evaluation of the effect of diameter of (10)B nanoparticles and various neutron capture cross-section libraries on macroscopic dose enhancement in boron neutron capture therapy (BNCT). MATERIAL AND METHODS: MCNPX Monte Carlo code was used for simulation of a (252)Cf...

Descripción completa

Detalles Bibliográficos
Autores principales: Farhood, Bagher, Ghorbani, Mahdi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Termedia Publishing House 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300365/
https://www.ncbi.nlm.nih.gov/pubmed/25834582
http://dx.doi.org/10.5114/jcb.2014.48031
_version_ 1782353507673702400
author Farhood, Bagher
Ghorbani, Mahdi
author_facet Farhood, Bagher
Ghorbani, Mahdi
author_sort Farhood, Bagher
collection PubMed
description PURPOSE: The aim of this study is evaluation of the effect of diameter of (10)B nanoparticles and various neutron capture cross-section libraries on macroscopic dose enhancement in boron neutron capture therapy (BNCT). MATERIAL AND METHODS: MCNPX Monte Carlo code was used for simulation of a (252)Cf source, a soft tissue phantom and a tumor containing (10)B nanoparticles. Using (252)Cf as a neutron source, macroscopic dose enhancement factor (MDEF) and total dose rate in tumor in the presence of 100, 200, and 500 ppm of (10)B nanoparticles with 25 nm, 50 nm, and 100 nm diameters were calculated. Additionally, the effect of ENDF, JEFF, JENDL, and CENDL neutron capture cross-section libraries on MDEF was evaluated. RESULTS: There is not a linear relationship between the average MDEF value and nanoparticles’ diameter but the average MDEF grows with increased concentration of (10)B nanoparticles. There is an increasing trend for average MDEF with the tumor distance. The average MDEF values were obtained the same for various neutron capture cross-section libraries. The maximum and minimum doses that effect on the total dose in tumor were neutron and secondary photon doses, respectively. Furthermore, the boron capture related dose component reduced in some extent with increase of diameter of (10)B nanoparticles. CONCLUSIONS: Based on the results of this study, it can be concluded that from physical point of view, various nanoparticle diameters have no dominant effect on average MDEF value in tumor. Furthermore, it is concluded that various neutron capture cross-section libraries are resulted to the same macroscopic dose enhancements. However, it is predicted that taking into account the biological effects for various nanoparticle diameters will result in different dose enhancements.
format Online
Article
Text
id pubmed-4300365
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Termedia Publishing House
record_format MEDLINE/PubMed
spelling pubmed-43003652015-04-01 Effect of diameter of nanoparticles and capture cross-section library on macroscopic dose enhancement in boron neutron capture therapy Farhood, Bagher Ghorbani, Mahdi J Contemp Brachytherapy Original Paper PURPOSE: The aim of this study is evaluation of the effect of diameter of (10)B nanoparticles and various neutron capture cross-section libraries on macroscopic dose enhancement in boron neutron capture therapy (BNCT). MATERIAL AND METHODS: MCNPX Monte Carlo code was used for simulation of a (252)Cf source, a soft tissue phantom and a tumor containing (10)B nanoparticles. Using (252)Cf as a neutron source, macroscopic dose enhancement factor (MDEF) and total dose rate in tumor in the presence of 100, 200, and 500 ppm of (10)B nanoparticles with 25 nm, 50 nm, and 100 nm diameters were calculated. Additionally, the effect of ENDF, JEFF, JENDL, and CENDL neutron capture cross-section libraries on MDEF was evaluated. RESULTS: There is not a linear relationship between the average MDEF value and nanoparticles’ diameter but the average MDEF grows with increased concentration of (10)B nanoparticles. There is an increasing trend for average MDEF with the tumor distance. The average MDEF values were obtained the same for various neutron capture cross-section libraries. The maximum and minimum doses that effect on the total dose in tumor were neutron and secondary photon doses, respectively. Furthermore, the boron capture related dose component reduced in some extent with increase of diameter of (10)B nanoparticles. CONCLUSIONS: Based on the results of this study, it can be concluded that from physical point of view, various nanoparticle diameters have no dominant effect on average MDEF value in tumor. Furthermore, it is concluded that various neutron capture cross-section libraries are resulted to the same macroscopic dose enhancements. However, it is predicted that taking into account the biological effects for various nanoparticle diameters will result in different dose enhancements. Termedia Publishing House 2014-12-31 2015-01 /pmc/articles/PMC4300365/ /pubmed/25834582 http://dx.doi.org/10.5114/jcb.2014.48031 Text en Copyright © 2014 Termedia http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License, permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Paper
Farhood, Bagher
Ghorbani, Mahdi
Effect of diameter of nanoparticles and capture cross-section library on macroscopic dose enhancement in boron neutron capture therapy
title Effect of diameter of nanoparticles and capture cross-section library on macroscopic dose enhancement in boron neutron capture therapy
title_full Effect of diameter of nanoparticles and capture cross-section library on macroscopic dose enhancement in boron neutron capture therapy
title_fullStr Effect of diameter of nanoparticles and capture cross-section library on macroscopic dose enhancement in boron neutron capture therapy
title_full_unstemmed Effect of diameter of nanoparticles and capture cross-section library on macroscopic dose enhancement in boron neutron capture therapy
title_short Effect of diameter of nanoparticles and capture cross-section library on macroscopic dose enhancement in boron neutron capture therapy
title_sort effect of diameter of nanoparticles and capture cross-section library on macroscopic dose enhancement in boron neutron capture therapy
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300365/
https://www.ncbi.nlm.nih.gov/pubmed/25834582
http://dx.doi.org/10.5114/jcb.2014.48031
work_keys_str_mv AT farhoodbagher effectofdiameterofnanoparticlesandcapturecrosssectionlibraryonmacroscopicdoseenhancementinboronneutroncapturetherapy
AT ghorbanimahdi effectofdiameterofnanoparticlesandcapturecrosssectionlibraryonmacroscopicdoseenhancementinboronneutroncapturetherapy