Cargando…

Unusual ferromagnetic critical behavior owing to short-range antiferromagnetic correlations in antiperovskite Cu(1-x)NMn(3+x) (0.1 ≤ x ≤ 0.4)

For ferromagnets, varying from simple metals to strongly correlated oxides,the critical behaviors near the Curie temperature (T(C)) can be grouped into several universal classes. In this paper, we report an unusual critical behavior in manganese nitrides Cu(1-x)NMn(3+x) (0.1 ≤ x ≤ 0.4). Although the...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Jianchao, Tong, Peng, Cui, Dapeng, Yang, Cheng, Yang, Jie, Lin, Shuai, Wang, Bosen, Tong, Wei, Zhang, Lei, Zou, Youming, Sun, Yuping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300457/
https://www.ncbi.nlm.nih.gov/pubmed/25604754
http://dx.doi.org/10.1038/srep07933
Descripción
Sumario:For ferromagnets, varying from simple metals to strongly correlated oxides,the critical behaviors near the Curie temperature (T(C)) can be grouped into several universal classes. In this paper, we report an unusual critical behavior in manganese nitrides Cu(1-x)NMn(3+x) (0.1 ≤ x ≤ 0.4). Although the critical behavior below T(C) can be well described by mean field (MF) theory, robust critical fluctuations beyond the expectations of any universal classes are observed above T(C) in x = 0.1. The critical fluctuations become weaker when x increases, and the MF-like critical behavior is finally restored at x = 0.4. In addition, the paramagnetic susceptibility of all the samples deviates from the Curie-Weiss (CW) law just above T(C). This deviation is gradually smeared as x increases. The short-range antiferromagnetic ordering above T(C) revealed by our electron spin resonance measurement explains both the unusual critical behavior and the breakdown of the CW law.