Cargando…

Gene expression changes during retinal development and rod specification

PURPOSE: Retinitis pigmentosa (RP) typically results from individual mutations in any one of >70 genes that cause rod photoreceptor cells to degenerate prematurely, eventually resulting in blindness. Gene therapies targeting individual RP genes have shown efficacy at clinical trial; however, thes...

Descripción completa

Detalles Bibliográficos
Autores principales: Mansergh, Fiona C., Carrigan, Matthew, Hokamp, Karsten, Farrar, G. Jane
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Vision 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4301594/
https://www.ncbi.nlm.nih.gov/pubmed/25678762
_version_ 1782353670339297280
author Mansergh, Fiona C.
Carrigan, Matthew
Hokamp, Karsten
Farrar, G. Jane
author_facet Mansergh, Fiona C.
Carrigan, Matthew
Hokamp, Karsten
Farrar, G. Jane
author_sort Mansergh, Fiona C.
collection PubMed
description PURPOSE: Retinitis pigmentosa (RP) typically results from individual mutations in any one of >70 genes that cause rod photoreceptor cells to degenerate prematurely, eventually resulting in blindness. Gene therapies targeting individual RP genes have shown efficacy at clinical trial; however, these therapies require the surviving photoreceptor cells to be viable and functional, and may be economically feasible for only the more commonly mutated genes. An alternative potential treatment strategy, particularly for late stage disease, may involve stem cell transplants into the photoreceptor layer of the retina. Rod progenitors from postnatal mouse retinas can be transplanted and can form photoreceptors in recipient adult retinas; optimal numbers of transplantable cells are obtained from postnatal day 3–5 (P3–5) retinas. These cells can also be expanded in culture; however, this results in the loss of photoreceptor potential. Gene expression differences between postnatal retinas, cultured retinal progenitor cells (RPCs), and rod photoreceptor precursors were investigated to identify gene expression patterns involved in the specification of rod photoreceptors. METHODS: Microarrays were used to investigate differences in gene expression between cultured RPCs that have lost photoreceptor potential, P1 retinas, and fresh P5 retinas that contain significant numbers of transplantable photoreceptors. Additionally, fluorescence-activated cell sorting (FACS) sorted Rho-eGFP-expressing rod photoreceptor precursors were compared with Rho-eGFP-negative cells from the same P5 retinas. Differential expression was confirmed with quantitative polymerase chain reaction (q-PCR). RESULTS: Analysis of the microarray data sets, including the use of t-distributed stochastic neighbor embedding (t-SNE) to identify expression pattern neighbors of key photoreceptor specific genes, resulted in the identification of 636 genes differentially regulated during rod specification. Forty-four of these genes when mutated have previously been found to cause retinal disease. Although gene function in other tissues may be known, the retinal function of approximately 61% of the gene list is as yet undetermined. Many of these genes’ promoters contain binding sites for the key photoreceptor transcription factors Crx and Nr2e3; moreover, the genomic clustering of differentially regulated genes appears to be non-random. CONCLUSIONS: This study aids in understanding gene expression differences between rod photoreceptor progenitors versus cultured RPCs that have lost photoreceptor potential. The results provide insights into rod photoreceptor development and should expedite the development of cell-based treatments for RP. Furthermore, the data set includes a large number of retinopathy genes; less-well-characterized genes within this data set are a resource for those seeking to identify novel retinopathy genes in patients with RP (GEO accession: GSE59201).
format Online
Article
Text
id pubmed-4301594
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Molecular Vision
record_format MEDLINE/PubMed
spelling pubmed-43015942015-02-12 Gene expression changes during retinal development and rod specification Mansergh, Fiona C. Carrigan, Matthew Hokamp, Karsten Farrar, G. Jane Mol Vis Research Article PURPOSE: Retinitis pigmentosa (RP) typically results from individual mutations in any one of >70 genes that cause rod photoreceptor cells to degenerate prematurely, eventually resulting in blindness. Gene therapies targeting individual RP genes have shown efficacy at clinical trial; however, these therapies require the surviving photoreceptor cells to be viable and functional, and may be economically feasible for only the more commonly mutated genes. An alternative potential treatment strategy, particularly for late stage disease, may involve stem cell transplants into the photoreceptor layer of the retina. Rod progenitors from postnatal mouse retinas can be transplanted and can form photoreceptors in recipient adult retinas; optimal numbers of transplantable cells are obtained from postnatal day 3–5 (P3–5) retinas. These cells can also be expanded in culture; however, this results in the loss of photoreceptor potential. Gene expression differences between postnatal retinas, cultured retinal progenitor cells (RPCs), and rod photoreceptor precursors were investigated to identify gene expression patterns involved in the specification of rod photoreceptors. METHODS: Microarrays were used to investigate differences in gene expression between cultured RPCs that have lost photoreceptor potential, P1 retinas, and fresh P5 retinas that contain significant numbers of transplantable photoreceptors. Additionally, fluorescence-activated cell sorting (FACS) sorted Rho-eGFP-expressing rod photoreceptor precursors were compared with Rho-eGFP-negative cells from the same P5 retinas. Differential expression was confirmed with quantitative polymerase chain reaction (q-PCR). RESULTS: Analysis of the microarray data sets, including the use of t-distributed stochastic neighbor embedding (t-SNE) to identify expression pattern neighbors of key photoreceptor specific genes, resulted in the identification of 636 genes differentially regulated during rod specification. Forty-four of these genes when mutated have previously been found to cause retinal disease. Although gene function in other tissues may be known, the retinal function of approximately 61% of the gene list is as yet undetermined. Many of these genes’ promoters contain binding sites for the key photoreceptor transcription factors Crx and Nr2e3; moreover, the genomic clustering of differentially regulated genes appears to be non-random. CONCLUSIONS: This study aids in understanding gene expression differences between rod photoreceptor progenitors versus cultured RPCs that have lost photoreceptor potential. The results provide insights into rod photoreceptor development and should expedite the development of cell-based treatments for RP. Furthermore, the data set includes a large number of retinopathy genes; less-well-characterized genes within this data set are a resource for those seeking to identify novel retinopathy genes in patients with RP (GEO accession: GSE59201). Molecular Vision 2015-01-20 /pmc/articles/PMC4301594/ /pubmed/25678762 Text en Copyright © 2015 Molecular Vision. http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited, used for non-commercial purposes, and is not altered or transformed.
spellingShingle Research Article
Mansergh, Fiona C.
Carrigan, Matthew
Hokamp, Karsten
Farrar, G. Jane
Gene expression changes during retinal development and rod specification
title Gene expression changes during retinal development and rod specification
title_full Gene expression changes during retinal development and rod specification
title_fullStr Gene expression changes during retinal development and rod specification
title_full_unstemmed Gene expression changes during retinal development and rod specification
title_short Gene expression changes during retinal development and rod specification
title_sort gene expression changes during retinal development and rod specification
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4301594/
https://www.ncbi.nlm.nih.gov/pubmed/25678762
work_keys_str_mv AT manserghfionac geneexpressionchangesduringretinaldevelopmentandrodspecification
AT carriganmatthew geneexpressionchangesduringretinaldevelopmentandrodspecification
AT hokampkarsten geneexpressionchangesduringretinaldevelopmentandrodspecification
AT farrargjane geneexpressionchangesduringretinaldevelopmentandrodspecification