Cargando…
Identifying a gene expression signature of frequent COPD exacerbations in peripheral blood using network methods
BACKGROUND: Exacerbations of chronic obstructive pulmonary disease (COPD), characterized by acute deterioration in symptoms, may be due to bacterial or viral infections, environmental exposures, or unknown factors. Exacerbation frequency may be a stable trait in COPD patients, which could imply gene...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302028/ https://www.ncbi.nlm.nih.gov/pubmed/25582225 http://dx.doi.org/10.1186/s12920-014-0072-y |
Sumario: | BACKGROUND: Exacerbations of chronic obstructive pulmonary disease (COPD), characterized by acute deterioration in symptoms, may be due to bacterial or viral infections, environmental exposures, or unknown factors. Exacerbation frequency may be a stable trait in COPD patients, which could imply genetic susceptibility. Observing the genes, networks, and pathways that are up- and down-regulated in COPD patients with differing susceptibility to exacerbations will help to elucidate the molecular signature and pathogenesis of COPD exacerbations. METHODS: Gene expression array and plasma biomarker data were obtained using whole-blood samples from subjects enrolled in the Treatment of Emphysema With a Gamma-Selective Retinoid Agonist (TESRA) study. Linear regression, weighted gene co-expression network analysis (WGCNA), and pathway analysis were used to identify signatures and network sub-modules associated with the number of exacerbations within the previous year; other COPD-related phenotypes were also investigated. RESULTS: Individual genes were not found to be significantly associated with the number of exacerbations. However using network methods, a statistically significant gene module was identified, along with other modules showing moderate association. A diverse signature was observed across these modules using pathway analysis, marked by differences in B cell and NK cell activity, as well as cellular markers of viral infection. Within two modules, gene set enrichment analysis recapitulated the molecular signatures of two gene expression experiments; one involving sputum from asthma exacerbations and another involving viral lung infections. The plasma biomarker myeloperoxidase (MPO) was associated with the number of recent exacerbations. CONCLUSION: A distinct signature of COPD exacerbations may be observed in peripheral blood months following the acute illness. While not predictive in this cross-sectional analysis, these results will be useful in uncovering the molecular pathogenesis of COPD exacerbations. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12920-014-0072-y) contains supplementary material, which is available to authorized users. |
---|