Cargando…
Semi-supervised adaptive-height snipping of the hierarchical clustering tree
BACKGROUND: In genomics, hierarchical clustering (HC) is a popular method for grouping similar samples based on a distance measure. HC algorithms do not actually create clusters, but compute a hierarchical representation of the data set. Usually, a fixed height on the HC tree is used, and each conti...
Autores principales: | Obulkasim, Askar, Meijer, Gerrit A, van de Wiel, Mark A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302100/ https://www.ncbi.nlm.nih.gov/pubmed/25592847 http://dx.doi.org/10.1186/s12859-014-0448-1 |
Ejemplares similares
-
HCsnip: An R Package for Semi-supervised Snipping of the Hierarchical Clustering Tree
por: Obulkasim, Askar, et al.
Publicado: (2015) -
Stepwise classification of cancer samples using clinical and molecular data
por: Obulkasim, Askar, et al.
Publicado: (2011) -
Semi-supervised oblique predictive clustering trees
por: Stepišnik, Tomaž, et al.
Publicado: (2021) -
stepwiseCM: An R Package for Stepwise Classification of Cancer Samples Using Multiple Heterogeneous Data Sets
por: Obulkasim, Askar, et al.
Publicado: (2014) -
Semi‐supervised empirical Bayes group‐regularized factor regression
por: Münch, Magnus M., et al.
Publicado: (2022)