Cargando…
Cloud computing approaches for prediction of ligand binding poses and pathways
We describe an innovative protocol for ab initio prediction of ligand crystallographic binding poses and highly effective analysis of large datasets generated for protein-ligand dynamics. We include a procedure for setup and performance of distributed molecular dynamics simulations on cloud computin...
Autores principales: | Lawrenz, Morgan, Shukla, Diwakar, Pande, Vijay S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302315/ https://www.ncbi.nlm.nih.gov/pubmed/25608737 http://dx.doi.org/10.1038/srep07918 |
Ejemplares similares
-
Cloud-based simulations on Google Exacycle reveal ligand-modulation of GPCR activation pathways
por: Kohlhoff, Kai J., et al.
Publicado: (2013) -
Open Binding Pose Metadynamics: An Effective Approach
for the Ranking of Protein–Ligand Binding Poses
por: Lukauskis, Dominykas, et al.
Publicado: (2022) -
A reinforcement learning approach for protein–ligand binding pose prediction
por: Wang, Chenran, et al.
Publicado: (2022) -
Conformational heterogeneity of the calmodulin binding interface
por: Shukla, Diwakar, et al.
Publicado: (2016) -
Corrigendum: Conformational heterogeneity of the calmodulin binding interface
por: Shukla, Diwakar, et al.
Publicado: (2016)