Cargando…

Genome-wide screen for modifiers of Na(+)/K(+)ATPase alleles identifies critical genetic loci

BACKGROUND: Mutations affecting the Na(+)/ K(+)ATPase (a.k.a. the sodium-potassium pump) genes cause conditional locomotor phenotypes in flies and three distinct complex neurological diseases in humans. More than 50 mutations have been identified affecting the human ATP1A2 and ATP1A3 genes that are...

Descripción completa

Detalles Bibliográficos
Autores principales: Talsma, Aaron D, Chaves, John F, LaMonaca, Alexandra, Wieczorek, Emily D, Palladino, Michael J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302446/
https://www.ncbi.nlm.nih.gov/pubmed/25476251
http://dx.doi.org/10.1186/s13041-014-0089-3
_version_ 1782353798971260928
author Talsma, Aaron D
Chaves, John F
LaMonaca, Alexandra
Wieczorek, Emily D
Palladino, Michael J
author_facet Talsma, Aaron D
Chaves, John F
LaMonaca, Alexandra
Wieczorek, Emily D
Palladino, Michael J
author_sort Talsma, Aaron D
collection PubMed
description BACKGROUND: Mutations affecting the Na(+)/ K(+)ATPase (a.k.a. the sodium-potassium pump) genes cause conditional locomotor phenotypes in flies and three distinct complex neurological diseases in humans. More than 50 mutations have been identified affecting the human ATP1A2 and ATP1A3 genes that are known to cause rapid-onset Dystonia Parkinsonism, familial hemiplegic migraine, alternating hemiplegia of childhood, and variants of familial hemiplegic migraine with neurological complications including seizures and various mood disorders. In flies, mutations affecting the ATPalpha gene have dramatic phenotypes including altered longevity, neural dysfunction, neurodegeneration, myodegeneration, and striking locomotor impairment. Locomotor defects can manifest as conditional bang-sensitive (BS) or temperature-sensitive (TS) paralysis: phenotypes well-suited for genetic screening. RESULTS: We performed a genome-wide deficiency screen using three distinct missense alleles of ATPalpha and conditional locomotor function assays to identify novel modifier loci. A secondary screen confirmed allele-specificity of the interactions and many of the interactions were mapped to single genes and subsequently validated. We successfully identified 64 modifier loci and used classical mutations and RNAi to confirm 50 single gene interactions. The genes identified include those with known function, several with unknown function or that were otherwise uncharacterized, and many loci with no described association with locomotor or Na(+)/K(+) ATPase function. CONCLUSIONS: We used an unbiased genome-wide screen to find regions of the genome containing elements important for genetic modulation of ATPalpha dysfunction. We have identified many critical regions and narrowed several of these to single genes. These data demonstrate there are many loci capable of modifying ATPalpha dysfunction, which may provide the basis for modifying migraine, locomotor and seizure dysfunction in animals. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13041-014-0089-3) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4302446
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-43024462015-02-03 Genome-wide screen for modifiers of Na(+)/K(+)ATPase alleles identifies critical genetic loci Talsma, Aaron D Chaves, John F LaMonaca, Alexandra Wieczorek, Emily D Palladino, Michael J Mol Brain Research BACKGROUND: Mutations affecting the Na(+)/ K(+)ATPase (a.k.a. the sodium-potassium pump) genes cause conditional locomotor phenotypes in flies and three distinct complex neurological diseases in humans. More than 50 mutations have been identified affecting the human ATP1A2 and ATP1A3 genes that are known to cause rapid-onset Dystonia Parkinsonism, familial hemiplegic migraine, alternating hemiplegia of childhood, and variants of familial hemiplegic migraine with neurological complications including seizures and various mood disorders. In flies, mutations affecting the ATPalpha gene have dramatic phenotypes including altered longevity, neural dysfunction, neurodegeneration, myodegeneration, and striking locomotor impairment. Locomotor defects can manifest as conditional bang-sensitive (BS) or temperature-sensitive (TS) paralysis: phenotypes well-suited for genetic screening. RESULTS: We performed a genome-wide deficiency screen using three distinct missense alleles of ATPalpha and conditional locomotor function assays to identify novel modifier loci. A secondary screen confirmed allele-specificity of the interactions and many of the interactions were mapped to single genes and subsequently validated. We successfully identified 64 modifier loci and used classical mutations and RNAi to confirm 50 single gene interactions. The genes identified include those with known function, several with unknown function or that were otherwise uncharacterized, and many loci with no described association with locomotor or Na(+)/K(+) ATPase function. CONCLUSIONS: We used an unbiased genome-wide screen to find regions of the genome containing elements important for genetic modulation of ATPalpha dysfunction. We have identified many critical regions and narrowed several of these to single genes. These data demonstrate there are many loci capable of modifying ATPalpha dysfunction, which may provide the basis for modifying migraine, locomotor and seizure dysfunction in animals. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13041-014-0089-3) contains supplementary material, which is available to authorized users. BioMed Central 2014-12-05 /pmc/articles/PMC4302446/ /pubmed/25476251 http://dx.doi.org/10.1186/s13041-014-0089-3 Text en © Talsma et al.; licensee BioMed Central. 2014 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Talsma, Aaron D
Chaves, John F
LaMonaca, Alexandra
Wieczorek, Emily D
Palladino, Michael J
Genome-wide screen for modifiers of Na(+)/K(+)ATPase alleles identifies critical genetic loci
title Genome-wide screen for modifiers of Na(+)/K(+)ATPase alleles identifies critical genetic loci
title_full Genome-wide screen for modifiers of Na(+)/K(+)ATPase alleles identifies critical genetic loci
title_fullStr Genome-wide screen for modifiers of Na(+)/K(+)ATPase alleles identifies critical genetic loci
title_full_unstemmed Genome-wide screen for modifiers of Na(+)/K(+)ATPase alleles identifies critical genetic loci
title_short Genome-wide screen for modifiers of Na(+)/K(+)ATPase alleles identifies critical genetic loci
title_sort genome-wide screen for modifiers of na(+)/k(+)atpase alleles identifies critical genetic loci
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302446/
https://www.ncbi.nlm.nih.gov/pubmed/25476251
http://dx.doi.org/10.1186/s13041-014-0089-3
work_keys_str_mv AT talsmaaarond genomewidescreenformodifiersofnakatpaseallelesidentifiescriticalgeneticloci
AT chavesjohnf genomewidescreenformodifiersofnakatpaseallelesidentifiescriticalgeneticloci
AT lamonacaalexandra genomewidescreenformodifiersofnakatpaseallelesidentifiescriticalgeneticloci
AT wieczorekemilyd genomewidescreenformodifiersofnakatpaseallelesidentifiescriticalgeneticloci
AT palladinomichaelj genomewidescreenformodifiersofnakatpaseallelesidentifiescriticalgeneticloci