Cargando…

Immune Suppression by Myeloid Cells in HIV Infection: New Targets for Immunotherapy

Over thirty years of extensive research has not yet solved the complexity of HIV pathogenesis leading to a continued need for a successful cure. Recent immunotherapy-based approaches are aimed at controlling the infection by reverting immune dysfunction. Comparatively less appreciated than the role...

Descripción completa

Detalles Bibliográficos
Autores principales: Mehraj, Vikram, Jenabian, Mohammad-Ali, Vyboh, Kishanda, Routy, Jean-Pierre
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Bentham Open 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302459/
https://www.ncbi.nlm.nih.gov/pubmed/25624956
http://dx.doi.org/10.2174/1874613601408010066
_version_ 1782353802092871680
author Mehraj, Vikram
Jenabian, Mohammad-Ali
Vyboh, Kishanda
Routy, Jean-Pierre
author_facet Mehraj, Vikram
Jenabian, Mohammad-Ali
Vyboh, Kishanda
Routy, Jean-Pierre
author_sort Mehraj, Vikram
collection PubMed
description Over thirty years of extensive research has not yet solved the complexity of HIV pathogenesis leading to a continued need for a successful cure. Recent immunotherapy-based approaches are aimed at controlling the infection by reverting immune dysfunction. Comparatively less appreciated than the role of T cells in the context of HIV infection, the myeloid cells including macrophages monocytes, dendritic cells (DCs) and neutrophils contribute significantly to immune dysfunction. Host restriction factors are cellular proteins expressed in these cells which are circumvented by HIV. Guided by the recent literature, the role of myeloid cells in HIV infection will be discussed highlighting potential targets for immunotherapy. HIV infection, which is mainly characterized by CD4 T cell dysfunction, also manifests in a vicious cycle of events comprising of inflammation and immune activation. Targeting the interaction of programmed death-1 (PD-1), an important regulator of T cell function; with PD-L1 expressed mainly on myeloid cells could bring promising results. Macrophage functional polarization from pro-inflammatory M1 to anti-inflammatory M2 and vice versa has significant implications in viral pathogenesis. Neutrophils, recently discovered low density granular cells, myeloid derived suppressor cells (MDSCs) and yolk sac macrophages provide new avenues of research on HIV pathogenesis and persistence. Recent evidence has also shown significant implications of neutrophil extracellular traps (NETs), antimicrobial peptides and opsonizing antibodies. Further studies aimed to understand and modify myeloid cell restriction mechanisms have the potential to contribute in the future development of more effective anti-HIV interventions that may pave the way to viral eradication.
format Online
Article
Text
id pubmed-4302459
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Bentham Open
record_format MEDLINE/PubMed
spelling pubmed-43024592015-01-26 Immune Suppression by Myeloid Cells in HIV Infection: New Targets for Immunotherapy Mehraj, Vikram Jenabian, Mohammad-Ali Vyboh, Kishanda Routy, Jean-Pierre Open AIDS J Article Over thirty years of extensive research has not yet solved the complexity of HIV pathogenesis leading to a continued need for a successful cure. Recent immunotherapy-based approaches are aimed at controlling the infection by reverting immune dysfunction. Comparatively less appreciated than the role of T cells in the context of HIV infection, the myeloid cells including macrophages monocytes, dendritic cells (DCs) and neutrophils contribute significantly to immune dysfunction. Host restriction factors are cellular proteins expressed in these cells which are circumvented by HIV. Guided by the recent literature, the role of myeloid cells in HIV infection will be discussed highlighting potential targets for immunotherapy. HIV infection, which is mainly characterized by CD4 T cell dysfunction, also manifests in a vicious cycle of events comprising of inflammation and immune activation. Targeting the interaction of programmed death-1 (PD-1), an important regulator of T cell function; with PD-L1 expressed mainly on myeloid cells could bring promising results. Macrophage functional polarization from pro-inflammatory M1 to anti-inflammatory M2 and vice versa has significant implications in viral pathogenesis. Neutrophils, recently discovered low density granular cells, myeloid derived suppressor cells (MDSCs) and yolk sac macrophages provide new avenues of research on HIV pathogenesis and persistence. Recent evidence has also shown significant implications of neutrophil extracellular traps (NETs), antimicrobial peptides and opsonizing antibodies. Further studies aimed to understand and modify myeloid cell restriction mechanisms have the potential to contribute in the future development of more effective anti-HIV interventions that may pave the way to viral eradication. Bentham Open 2014-12-29 /pmc/articles/PMC4302459/ /pubmed/25624956 http://dx.doi.org/10.2174/1874613601408010066 Text en © Mehraj et al.; Licensee Bentham Open. http://creativecommons.org/licenses/by-nc/3.0/ This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.
spellingShingle Article
Mehraj, Vikram
Jenabian, Mohammad-Ali
Vyboh, Kishanda
Routy, Jean-Pierre
Immune Suppression by Myeloid Cells in HIV Infection: New Targets for Immunotherapy
title Immune Suppression by Myeloid Cells in HIV Infection: New Targets for Immunotherapy
title_full Immune Suppression by Myeloid Cells in HIV Infection: New Targets for Immunotherapy
title_fullStr Immune Suppression by Myeloid Cells in HIV Infection: New Targets for Immunotherapy
title_full_unstemmed Immune Suppression by Myeloid Cells in HIV Infection: New Targets for Immunotherapy
title_short Immune Suppression by Myeloid Cells in HIV Infection: New Targets for Immunotherapy
title_sort immune suppression by myeloid cells in hiv infection: new targets for immunotherapy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302459/
https://www.ncbi.nlm.nih.gov/pubmed/25624956
http://dx.doi.org/10.2174/1874613601408010066
work_keys_str_mv AT mehrajvikram immunesuppressionbymyeloidcellsinhivinfectionnewtargetsforimmunotherapy
AT jenabianmohammadali immunesuppressionbymyeloidcellsinhivinfectionnewtargetsforimmunotherapy
AT vybohkishanda immunesuppressionbymyeloidcellsinhivinfectionnewtargetsforimmunotherapy
AT routyjeanpierre immunesuppressionbymyeloidcellsinhivinfectionnewtargetsforimmunotherapy