Cargando…
Molecular subtyping of bladder cancer using Kohonen self-organizing maps
Kohonen self-organizing maps (SOMs) are unsupervised Artificial Neural Networks (ANNs) that are good for low-density data visualization. They easily deal with complex and nonlinear relationships between variables. We evaluated molecular events that characterize high- and low-grade BC pathways in the...
Autores principales: | Borkowska, Edyta M, Kruk, Andrzej, Jedrzejczyk, Adam, Rozniecki, Marek, Jablonowski, Zbigniew, Traczyk, Magdalena, Constantinou, Maria, Banaszkiewicz, Monika, Pietrusinski, Michal, Sosnowski, Marek, Hamdy, Freddie C, Peter, Stefan, Catto, James WF, Kaluzewski, Bogdan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302672/ https://www.ncbi.nlm.nih.gov/pubmed/25142434 http://dx.doi.org/10.1002/cam4.217 |
Ejemplares similares
-
Artificial neural network in predicting bladder cancer recurrence
por: Borkowska, Edyta, et al.
Publicado: (2012) -
Significance of CDKN2A gene A148T variant in patients with bladder cancer
por: Borkowska, Edyta, et al.
Publicado: (2011) -
Polymorphic variants of H-RAS protooncogene and their possible role in bladder cancer etiology
por: Traczyk, Magdalena, et al.
Publicado: (2012) -
Detection of loss of heterozygosity in patients with urinary bladder carcinoma: neoplastic tissue vs. urine sediment cells
por: Traczyk, Magdalena, et al.
Publicado: (2011) -
Concomitance of oncogenic HPV types, CHEK2 gene mutations, and CYP1B1 gene polymorphism as an increased risk factor for malignancy
por: Banaszkiewicz, Monika, et al.
Publicado: (2013)