Cargando…
The UNC-6/Netrin receptors UNC-40/DCC and UNC-5 inhibit growth cone filopodial protrusion via UNC-73/Trio, Rac-like GTPases and UNC-33/CRMP
UNC-6/Netrin is a conserved axon guidance cue that can mediate both attraction and repulsion. We previously discovered that attractive UNC-40/DCC receptor signaling stimulates growth cone filopodial protrusion and that repulsive UNC-40–UNC-5 heterodimers inhibit filopodial protrusion in C. elegans....
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302909/ https://www.ncbi.nlm.nih.gov/pubmed/25371370 http://dx.doi.org/10.1242/dev.110437 |
Sumario: | UNC-6/Netrin is a conserved axon guidance cue that can mediate both attraction and repulsion. We previously discovered that attractive UNC-40/DCC receptor signaling stimulates growth cone filopodial protrusion and that repulsive UNC-40–UNC-5 heterodimers inhibit filopodial protrusion in C. elegans. Here, we identify cytoplasmic signaling molecules required for UNC-6-mediated inhibition of filopodial protrusion involved in axon repulsion. We show that the Rac-like GTPases CED-10 and MIG-2, the Rac GTP exchange factor UNC-73/Trio, UNC-44/Ankyrin and UNC-33/CRMP act in inhibitory UNC-6 signaling. These molecules were required for the normal limitation of filopodial protrusion in developing growth cones and for inhibition of growth cone filopodial protrusion caused by activated MYR::UNC-40 and MYR::UNC-5 receptor signaling. Epistasis studies using activated CED-10 and MIG-2 indicated that UNC-44 and UNC-33 act downstream of the Rac-like GTPases in filopodial inhibition. UNC-73, UNC-33 and UNC-44 did not affect the accumulation of full-length UNC-5::GFP and UNC-40::GFP in growth cones, consistent with a model in which UNC-73, UNC-33 and UNC-44 influence cytoskeletal function during growth cone filopodial inhibition. |
---|