Cargando…
Reducing the computational footprint for real-time BCPNN learning
The implementation of synaptic plasticity in neural simulation or neuromorphic hardware is usually very resource-intensive, often requiring a compromise between efficiency and flexibility. A versatile, but computationally-expensive plasticity mechanism is provided by the Bayesian Confidence Propagat...
Autores principales: | Vogginger, Bernhard, Schüffny, René, Lansner, Anders, Cederström, Love, Partzsch, Johannes, Höppner, Sebastian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302947/ https://www.ncbi.nlm.nih.gov/pubmed/25657618 http://dx.doi.org/10.3389/fnins.2015.00002 |
Ejemplares similares
-
Optimizing BCPNN Learning Rule for Memory Access
por: Yang, Yu, et al.
Publicado: (2020) -
Mapping the BCPNN Learning Rule to a Memristor Model
por: Wang, Deyu, et al.
Publicado: (2021) -
VLSI Implementation of a 2.8 Gevent/s Packet-Based AER Interface with Routing and Event Sorting Functionality
por: Scholze, Stefan, et al.
Publicado: (2011) -
Switched-capacitor realization of presynaptic short-term-plasticity and stop-learning synapses in 28 nm CMOS
por: Noack, Marko, et al.
Publicado: (2015) -
Network-driven design principles for neuromorphic systems
por: Partzsch, Johannes, et al.
Publicado: (2015)