Cargando…
Using multiple imputation to deal with missing data and attrition in longitudinal studies with repeated measures of patient-reported outcomes
OBJECTIVE: Missing data is a ubiquitous problem in studies using patient-reported measures, decreasing sample sizes and causing possible bias. In longitudinal studies, special problems relate to attrition and death during follow-up. We describe a methodological approach for the use of multiple imput...
Autores principales: | Biering, Karin, Hjollund, Niels Henrik, Frydenberg, Morten |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4303367/ https://www.ncbi.nlm.nih.gov/pubmed/25653557 http://dx.doi.org/10.2147/CLEP.S72247 |
Ejemplares similares
-
Self-reported health following percutaneous coronary intervention: results from a cohort followed for 3 years with multiple measurements
por: Biering, Karin, et al.
Publicado: (2014) -
Considerations for Using Multiple Imputation in Propensity Score-Weighted Analysis – A Tutorial with Applied Example
por: Eiset, Andreas Halgreen, et al.
Publicado: (2022) -
The long-term course of fatigue following breast cancer diagnosis
por: Biering, Karin, et al.
Publicado: (2020) -
Missing data and multiple imputation in clinical epidemiological research
por: Pedersen, Alma B, et al.
Publicado: (2017) -
Imputation of missing genotypes: an empirical evaluation of IMPUTE
por: Zhao, Zhenming, et al.
Publicado: (2008)