Cargando…
Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production
Cobalamin (vitamin B(12)) is a complex metabolite and essential cofactor required by many branches of life, including most eukaryotic phytoplankton. Algae and other cobalamin auxotrophs rely on environmental cobalamin supplied from a relatively small set of cobalamin-producing prokaryotic taxa. Alth...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4303638/ https://www.ncbi.nlm.nih.gov/pubmed/25126756 http://dx.doi.org/10.1038/ismej.2014.142 |
_version_ | 1782353957882953728 |
---|---|
author | Doxey, Andrew C Kurtz, Daniel A Lynch, Michael DJ Sauder, Laura A Neufeld, Josh D |
author_facet | Doxey, Andrew C Kurtz, Daniel A Lynch, Michael DJ Sauder, Laura A Neufeld, Josh D |
author_sort | Doxey, Andrew C |
collection | PubMed |
description | Cobalamin (vitamin B(12)) is a complex metabolite and essential cofactor required by many branches of life, including most eukaryotic phytoplankton. Algae and other cobalamin auxotrophs rely on environmental cobalamin supplied from a relatively small set of cobalamin-producing prokaryotic taxa. Although several Bacteria have been implicated in cobalamin biosynthesis and associated with algal symbiosis, the involvement of Archaea in cobalamin production is poorly understood, especially with respect to the Thaumarchaeota. Based on the detection of cobalamin synthesis genes in available thaumarchaeotal genomes, we hypothesized that Thaumarchaeota, which are ubiquitous and abundant in aquatic environments, have an important role in cobalamin biosynthesis within global aquatic ecosystems. To test this hypothesis, we examined cobalamin synthesis genes across sequenced thaumarchaeotal genomes and 430 metagenomes from a diverse range of marine, freshwater and hypersaline environments. Our analysis demonstrates that all available thaumarchaeotal genomes possess cobalamin synthesis genes, predominantly from the anaerobic pathway, suggesting widespread genetic capacity for cobalamin synthesis. Furthermore, although bacterial cobalamin genes dominated most surface marine metagenomes, thaumarchaeotal cobalamin genes dominated metagenomes from polar marine environments, increased with depth in marine water columns, and displayed seasonality, with increased winter abundance observed in time-series datasets (e.g., L4 surface water in the English Channel). Our results also suggest niche partitioning between thaumarchaeotal and cyanobacterial ribosomal and cobalamin synthesis genes across all metagenomic datasets analyzed. These results provide strong evidence for specific biogeographical distributions of thaumarchaeotal cobalamin genes, expanding our understanding of the global biogeochemical roles played by Thaumarchaeota in aquatic environments. |
format | Online Article Text |
id | pubmed-4303638 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-43036382015-02-04 Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production Doxey, Andrew C Kurtz, Daniel A Lynch, Michael DJ Sauder, Laura A Neufeld, Josh D ISME J Original Article Cobalamin (vitamin B(12)) is a complex metabolite and essential cofactor required by many branches of life, including most eukaryotic phytoplankton. Algae and other cobalamin auxotrophs rely on environmental cobalamin supplied from a relatively small set of cobalamin-producing prokaryotic taxa. Although several Bacteria have been implicated in cobalamin biosynthesis and associated with algal symbiosis, the involvement of Archaea in cobalamin production is poorly understood, especially with respect to the Thaumarchaeota. Based on the detection of cobalamin synthesis genes in available thaumarchaeotal genomes, we hypothesized that Thaumarchaeota, which are ubiquitous and abundant in aquatic environments, have an important role in cobalamin biosynthesis within global aquatic ecosystems. To test this hypothesis, we examined cobalamin synthesis genes across sequenced thaumarchaeotal genomes and 430 metagenomes from a diverse range of marine, freshwater and hypersaline environments. Our analysis demonstrates that all available thaumarchaeotal genomes possess cobalamin synthesis genes, predominantly from the anaerobic pathway, suggesting widespread genetic capacity for cobalamin synthesis. Furthermore, although bacterial cobalamin genes dominated most surface marine metagenomes, thaumarchaeotal cobalamin genes dominated metagenomes from polar marine environments, increased with depth in marine water columns, and displayed seasonality, with increased winter abundance observed in time-series datasets (e.g., L4 surface water in the English Channel). Our results also suggest niche partitioning between thaumarchaeotal and cyanobacterial ribosomal and cobalamin synthesis genes across all metagenomic datasets analyzed. These results provide strong evidence for specific biogeographical distributions of thaumarchaeotal cobalamin genes, expanding our understanding of the global biogeochemical roles played by Thaumarchaeota in aquatic environments. Nature Publishing Group 2015-02 2014-08-15 /pmc/articles/PMC4303638/ /pubmed/25126756 http://dx.doi.org/10.1038/ismej.2014.142 Text en Copyright © 2015 International Society for Microbial Ecology http://creativecommons.org/licenses/by/3.0/ This work is licensed under a Creative Commons Attribution 3.0 Unported License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Original Article Doxey, Andrew C Kurtz, Daniel A Lynch, Michael DJ Sauder, Laura A Neufeld, Josh D Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production |
title | Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production |
title_full | Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production |
title_fullStr | Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production |
title_full_unstemmed | Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production |
title_short | Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production |
title_sort | aquatic metagenomes implicate thaumarchaeota in global cobalamin production |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4303638/ https://www.ncbi.nlm.nih.gov/pubmed/25126756 http://dx.doi.org/10.1038/ismej.2014.142 |
work_keys_str_mv | AT doxeyandrewc aquaticmetagenomesimplicatethaumarchaeotainglobalcobalaminproduction AT kurtzdaniela aquaticmetagenomesimplicatethaumarchaeotainglobalcobalaminproduction AT lynchmichaeldj aquaticmetagenomesimplicatethaumarchaeotainglobalcobalaminproduction AT sauderlauraa aquaticmetagenomesimplicatethaumarchaeotainglobalcobalaminproduction AT neufeldjoshd aquaticmetagenomesimplicatethaumarchaeotainglobalcobalaminproduction |