Cargando…
POAS4SPM: A Toolbox for SPM to Denoise Diffusion MRI Data
We present an implementation of a recently developed noise reduction algorithm for dMRI data, called multi-shell position orientation adaptive smoothing (msPOAS), as a toolbox for SPM. The method intrinsically adapts to the structures of different size and shape in dMRI and hence avoids blurring typ...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4303737/ https://www.ncbi.nlm.nih.gov/pubmed/24993814 http://dx.doi.org/10.1007/s12021-014-9228-3 |
_version_ | 1782353968978984960 |
---|---|
author | Tabelow, Karsten Mohammadi, Siawoosh Weiskopf, Nikolaus Polzehl, Jörg |
author_facet | Tabelow, Karsten Mohammadi, Siawoosh Weiskopf, Nikolaus Polzehl, Jörg |
author_sort | Tabelow, Karsten |
collection | PubMed |
description | We present an implementation of a recently developed noise reduction algorithm for dMRI data, called multi-shell position orientation adaptive smoothing (msPOAS), as a toolbox for SPM. The method intrinsically adapts to the structures of different size and shape in dMRI and hence avoids blurring typically observed in non-adaptive smoothing. We give examples for the usage of the toolbox and explain the determination of experiment-dependent parameters for an optimal performance of msPOAS. |
format | Online Article Text |
id | pubmed-4303737 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-43037372015-01-27 POAS4SPM: A Toolbox for SPM to Denoise Diffusion MRI Data Tabelow, Karsten Mohammadi, Siawoosh Weiskopf, Nikolaus Polzehl, Jörg Neuroinformatics Software Original Article We present an implementation of a recently developed noise reduction algorithm for dMRI data, called multi-shell position orientation adaptive smoothing (msPOAS), as a toolbox for SPM. The method intrinsically adapts to the structures of different size and shape in dMRI and hence avoids blurring typically observed in non-adaptive smoothing. We give examples for the usage of the toolbox and explain the determination of experiment-dependent parameters for an optimal performance of msPOAS. Springer US 2014-07-05 2015 /pmc/articles/PMC4303737/ /pubmed/24993814 http://dx.doi.org/10.1007/s12021-014-9228-3 Text en © The Author(s) 2014 https://creativecommons.org/licenses/by/4.0/ Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. |
spellingShingle | Software Original Article Tabelow, Karsten Mohammadi, Siawoosh Weiskopf, Nikolaus Polzehl, Jörg POAS4SPM: A Toolbox for SPM to Denoise Diffusion MRI Data |
title | POAS4SPM: A Toolbox for SPM to Denoise Diffusion MRI Data |
title_full | POAS4SPM: A Toolbox for SPM to Denoise Diffusion MRI Data |
title_fullStr | POAS4SPM: A Toolbox for SPM to Denoise Diffusion MRI Data |
title_full_unstemmed | POAS4SPM: A Toolbox for SPM to Denoise Diffusion MRI Data |
title_short | POAS4SPM: A Toolbox for SPM to Denoise Diffusion MRI Data |
title_sort | poas4spm: a toolbox for spm to denoise diffusion mri data |
topic | Software Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4303737/ https://www.ncbi.nlm.nih.gov/pubmed/24993814 http://dx.doi.org/10.1007/s12021-014-9228-3 |
work_keys_str_mv | AT tabelowkarsten poas4spmatoolboxforspmtodenoisediffusionmridata AT mohammadisiawoosh poas4spmatoolboxforspmtodenoisediffusionmridata AT weiskopfnikolaus poas4spmatoolboxforspmtodenoisediffusionmridata AT polzehljorg poas4spmatoolboxforspmtodenoisediffusionmridata |