Cargando…
Fourier transform infrared spectroscopy study of ligand photodissociation and migration in inducible nitric oxide synthase
Inducible nitric oxide synthase (iNOS) is a homodimeric heme enzyme that catalyzes the formation of nitric oxide (NO) from dioxygen and L-arginine (L-Arg) in a two-step process. The produced NO can either diffuse out of the heme pocket into the surroundings or it can rebind to the heme iron and inhi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000Research
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4304226/ https://www.ncbi.nlm.nih.gov/pubmed/25653844 http://dx.doi.org/10.12688/f1000research.5836.2 |
_version_ | 1782354059840192512 |
---|---|
author | Horn, Michael Nienhaus, Karin Nienhaus, Gerd Ulrich |
author_facet | Horn, Michael Nienhaus, Karin Nienhaus, Gerd Ulrich |
author_sort | Horn, Michael |
collection | PubMed |
description | Inducible nitric oxide synthase (iNOS) is a homodimeric heme enzyme that catalyzes the formation of nitric oxide (NO) from dioxygen and L-arginine (L-Arg) in a two-step process. The produced NO can either diffuse out of the heme pocket into the surroundings or it can rebind to the heme iron and inhibit enzyme action. Here we have employed Fourier transform infrared (FTIR) photolysis difference spectroscopy at cryogenic temperatures, using the carbon monoxide (CO) and NO stretching bands as local probes of the active site of iNOS. Characteristic changes were observed in the spectra of the heme-bound ligands upon binding of the cofactors. Unlike photolyzed CO, which becomes trapped in well-defined orientations, as indicated by sharp photoproduct bands, photoproduct bands of NO photodissociated from the ferric heme iron were not visible, indicating that NO does not reside in the protein interior in a well-defined location or orientation. This may be favorable for NO release from the enzyme during catalysis because it reduces self-inhibition. Moreover, we used temperature derivative spectroscopy (TDS) with FTIR monitoring to explore the dynamics of NO and carbon monoxide (CO) inside iNOS after photodissociation at cryogenic temperatures. Only a single kinetic photoproduct state was revealed, but no secondary docking sites as in hemoglobins. Interestingly, we observed that intense illumination of six-coordinate ferrous iNOS (oxy)-NO ruptures the bond between the heme iron and the proximal thiolate to yield five-coordinate ferric iNOS (oxy)-NO, demonstrating the strong trans effect of the heme-bound NO. |
format | Online Article Text |
id | pubmed-4304226 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | F1000Research |
record_format | MEDLINE/PubMed |
spelling | pubmed-43042262015-02-03 Fourier transform infrared spectroscopy study of ligand photodissociation and migration in inducible nitric oxide synthase Horn, Michael Nienhaus, Karin Nienhaus, Gerd Ulrich F1000Res Research Article Inducible nitric oxide synthase (iNOS) is a homodimeric heme enzyme that catalyzes the formation of nitric oxide (NO) from dioxygen and L-arginine (L-Arg) in a two-step process. The produced NO can either diffuse out of the heme pocket into the surroundings or it can rebind to the heme iron and inhibit enzyme action. Here we have employed Fourier transform infrared (FTIR) photolysis difference spectroscopy at cryogenic temperatures, using the carbon monoxide (CO) and NO stretching bands as local probes of the active site of iNOS. Characteristic changes were observed in the spectra of the heme-bound ligands upon binding of the cofactors. Unlike photolyzed CO, which becomes trapped in well-defined orientations, as indicated by sharp photoproduct bands, photoproduct bands of NO photodissociated from the ferric heme iron were not visible, indicating that NO does not reside in the protein interior in a well-defined location or orientation. This may be favorable for NO release from the enzyme during catalysis because it reduces self-inhibition. Moreover, we used temperature derivative spectroscopy (TDS) with FTIR monitoring to explore the dynamics of NO and carbon monoxide (CO) inside iNOS after photodissociation at cryogenic temperatures. Only a single kinetic photoproduct state was revealed, but no secondary docking sites as in hemoglobins. Interestingly, we observed that intense illumination of six-coordinate ferrous iNOS (oxy)-NO ruptures the bond between the heme iron and the proximal thiolate to yield five-coordinate ferric iNOS (oxy)-NO, demonstrating the strong trans effect of the heme-bound NO. F1000Research 2014-12-12 /pmc/articles/PMC4304226/ /pubmed/25653844 http://dx.doi.org/10.12688/f1000research.5836.2 Text en Copyright: © 2014 Horn M et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/publicdomain/zero/1.0/ Data associated with the article are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public domain dedication). |
spellingShingle | Research Article Horn, Michael Nienhaus, Karin Nienhaus, Gerd Ulrich Fourier transform infrared spectroscopy study of ligand photodissociation and migration in inducible nitric oxide synthase |
title | Fourier transform infrared spectroscopy study of ligand photodissociation and migration in inducible nitric oxide synthase |
title_full | Fourier transform infrared spectroscopy study of ligand photodissociation and migration in inducible nitric oxide synthase |
title_fullStr | Fourier transform infrared spectroscopy study of ligand photodissociation and migration in inducible nitric oxide synthase |
title_full_unstemmed | Fourier transform infrared spectroscopy study of ligand photodissociation and migration in inducible nitric oxide synthase |
title_short | Fourier transform infrared spectroscopy study of ligand photodissociation and migration in inducible nitric oxide synthase |
title_sort | fourier transform infrared spectroscopy study of ligand photodissociation and migration in inducible nitric oxide synthase |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4304226/ https://www.ncbi.nlm.nih.gov/pubmed/25653844 http://dx.doi.org/10.12688/f1000research.5836.2 |
work_keys_str_mv | AT hornmichael fouriertransforminfraredspectroscopystudyofligandphotodissociationandmigrationininduciblenitricoxidesynthase AT nienhauskarin fouriertransforminfraredspectroscopystudyofligandphotodissociationandmigrationininduciblenitricoxidesynthase AT nienhausgerdulrich fouriertransforminfraredspectroscopystudyofligandphotodissociationandmigrationininduciblenitricoxidesynthase |