Cargando…
Semi-supervised learning of causal relations in biomedical scientific discourse
BACKGROUND: The increasing number of daily published articles in the biomedical domain has become too large for humans to handle on their own. As a result, bio-text mining technologies have been developed to improve their workload by automatically analysing the text and extracting important knowledg...
Autores principales: | Mihăilă, Claudiu, Ananiadou, Sophia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4304242/ https://www.ncbi.nlm.nih.gov/pubmed/25559746 http://dx.doi.org/10.1186/1475-925X-13-S2-S1 |
Ejemplares similares
-
BioCause: Annotating and analysing causality in the biomedical domain
por: Mihăilă, Claudiu, et al.
Publicado: (2013) -
Semi-supervised method for biomedical event extraction
por: Wang, Jian, et al.
Publicado: (2013) -
The biomedical discourse relation bank
por: Prasad, Rashmi, et al.
Publicado: (2011) -
Competing Discourses of Scientific Identity among Postdoctoral Scholars in the Biomedical Sciences
por: Price, Rebecca M., et al.
Publicado: (2018) -
Semi-supervised learning /
Publicado: (2010)