Cargando…
oxBS-450K: A method for analysing hydroxymethylation using 450K BeadChips
DNA methylation analysis has become an integral part of biomedical research. For high-throughput applications such as epigenome-wide association studies, the Infinium HumanMethylation450 (450K) BeadChip is currently the platform of choice. However, BeadChip processing relies on traditional bisulfite...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4304834/ https://www.ncbi.nlm.nih.gov/pubmed/25175075 http://dx.doi.org/10.1016/j.ymeth.2014.08.009 |
Sumario: | DNA methylation analysis has become an integral part of biomedical research. For high-throughput applications such as epigenome-wide association studies, the Infinium HumanMethylation450 (450K) BeadChip is currently the platform of choice. However, BeadChip processing relies on traditional bisulfite (BS) based protocols which cannot discriminate between 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). Here, we report the adaptation of the recently developed oxidative bisulfite (oxBS) chemistry to specifically detect both 5mC and 5hmC in a single workflow using 450K BeadChips, termed oxBS-450K. Supported by validation using mass spectrometry and pyrosequencing, we demonstrate reproducible (R(2) > 0.99) detection of 5hmC in human brain tissue using the optimised oxBS-450K protocol described here. |
---|