Cargando…

Aryl Hydrocarbon Receptors in Osteoclast Lineage Cells Are a Negative Regulator of Bone Mass

Aryl hydrocarbon receptors (AhRs) play a critical role in various pathological and physiological processes. Although recent research has identified AhRs as a key contributor to bone metabolism following studies in systemic AhR knockout (KO) or transgenic mice, the cellular and molecular mechanism(s)...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Tai-yong, Pang, Wei-jun, Yang, Gong-she
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4304837/
https://www.ncbi.nlm.nih.gov/pubmed/25615839
http://dx.doi.org/10.1371/journal.pone.0117112
Descripción
Sumario:Aryl hydrocarbon receptors (AhRs) play a critical role in various pathological and physiological processes. Although recent research has identified AhRs as a key contributor to bone metabolism following studies in systemic AhR knockout (KO) or transgenic mice, the cellular and molecular mechanism(s) in this process remain unclear. In this study, we explored the function of AhR in bone metabolism using AhR(RANKΔOc/ΔOc) (RANK(Cre/+);AhR(flox/flox)) mice. We observed enhanced bone mass together with decreased resorption in both male and female 12 and 24-week-old AhR(RANKΔOc/ΔOc) mice. Control mice treated with 3-methylcholanthrene (3MC), an AhR agonist, exhibited decreased bone mass and increased bone resorption, whereas AhR(CtskΔOc/ΔOc) (Ctsk(Cre/+);AhR(flox/flox)) mice injected with 3MC appeared to have a normal bone phenotype. In vitro, bone marrow-derived macrophages (BMDMs) from AhR(RANKΔOc/ΔOc) mice exhibited impaired osteoclastogenesis and repressed differentiation with downregulated expression of B lymphocyte-induced maturation protein 1 (Blimp1), and cytochrome P450 genes Cyp1b1 and Cyp1a2. Collectively, our results not only demonstrated that AhR in osteoclast lineage cells is a physiologically relevant regulator of bone resorption, but also highlighted the need for further studies on the skeletal actions of AhR inhibitors in osteoclast lineage cells commonly associated with bone diseases, especially diseases linked to environmental pollutants known to induce bone loss.