Cargando…

Using citizen-science data to identify local hotspots of seabird occurrence

Seabirds have been identified and used as indicators of ecosystem processes such as climate change and human activity in nearshore ecosystems around the globe. Temporal and spatial trends have been documented at large spatial scales, but few studies have examined more localized patterns of spatiotem...

Descripción completa

Detalles Bibliográficos
Autores principales: Ward, Eric J., Marshall, Kristin N., Ross, Toby, Sedgley, Adam, Hass, Todd, Pearson, Scott F., Joyce, Gerald, Hamel, Nathalie J., Hodum, Peter J., Faucett, Rob
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4304867/
https://www.ncbi.nlm.nih.gov/pubmed/25653898
http://dx.doi.org/10.7717/peerj.704
Descripción
Sumario:Seabirds have been identified and used as indicators of ecosystem processes such as climate change and human activity in nearshore ecosystems around the globe. Temporal and spatial trends have been documented at large spatial scales, but few studies have examined more localized patterns of spatiotemporal variation, by species or functional group. In this paper, we apply spatial occupancy models to assess the spatial patchiness and interannual trends of 18 seabird species in the Puget Sound region (Washington State, USA). Our dataset, the Puget Sound Seabird Survey of the Seattle Audubon Society, is unique in that it represents a seven-year study, collected with a focus on winter months (October–April). Despite historic declines of seabirds in the region over the last 50 years, results from our study are optimistic, suggesting increases in probabilities of occurrence for 14 of the 18 species included. We found support for declines in occurrence for white-winged scoters, brants, and 2 species of grebes. The decline of Western grebes in particular is troubling, but in agreement with other recent studies that have shown support for a range shift south in recent years, to the southern end of California Current.