Cargando…

A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using (18)F-FMISO-PET

Glioblastoma multiforme (GBM) is a highly invasive primary brain tumour that has poor prognosis despite aggressive treatment. A hallmark of these tumours is diffuse invasion into the surrounding brain, necessitating a multi-modal treatment approach, including surgery, radiation and chemotherapy. We...

Descripción completa

Detalles Bibliográficos
Autores principales: Rockne, Russell C., Trister, Andrew D., Jacobs, Joshua, Hawkins-Daarud, Andrea J., Neal, Maxwell L., Hendrickson, Kristi, Mrugala, Maciej M., Rockhill, Jason K., Kinahan, Paul, Krohn, Kenneth A., Swanson, Kristin R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4305419/
https://www.ncbi.nlm.nih.gov/pubmed/25540239
http://dx.doi.org/10.1098/rsif.2014.1174
_version_ 1782354230242181120
author Rockne, Russell C.
Trister, Andrew D.
Jacobs, Joshua
Hawkins-Daarud, Andrea J.
Neal, Maxwell L.
Hendrickson, Kristi
Mrugala, Maciej M.
Rockhill, Jason K.
Kinahan, Paul
Krohn, Kenneth A.
Swanson, Kristin R.
author_facet Rockne, Russell C.
Trister, Andrew D.
Jacobs, Joshua
Hawkins-Daarud, Andrea J.
Neal, Maxwell L.
Hendrickson, Kristi
Mrugala, Maciej M.
Rockhill, Jason K.
Kinahan, Paul
Krohn, Kenneth A.
Swanson, Kristin R.
author_sort Rockne, Russell C.
collection PubMed
description Glioblastoma multiforme (GBM) is a highly invasive primary brain tumour that has poor prognosis despite aggressive treatment. A hallmark of these tumours is diffuse invasion into the surrounding brain, necessitating a multi-modal treatment approach, including surgery, radiation and chemotherapy. We have previously demonstrated the ability of our model to predict radiographic response immediately following radiation therapy in individual GBM patients using a simplified geometry of the brain and theoretical radiation dose. Using only two pre-treatment magnetic resonance imaging scans, we calculate net rates of proliferation and invasion as well as radiation sensitivity for a patient's disease. Here, we present the application of our clinically targeted modelling approach to a single glioblastoma patient as a demonstration of our method. We apply our model in the full three-dimensional architecture of the brain to quantify the effects of regional resistance to radiation owing to hypoxia in vivo determined by [(18)F]-fluoromisonidazole positron emission tomography (FMISO-PET) and the patient-specific three-dimensional radiation treatment plan. Incorporation of hypoxia into our model with FMISO-PET increases the model–data agreement by an order of magnitude. This improvement was robust to our definition of hypoxia or the degree of radiation resistance quantified with the FMISO-PET image and our computational model, respectively. This work demonstrates a useful application of patient-specific modelling in personalized medicine and how mathematical modelling has the potential to unify multi-modality imaging and radiation treatment planning.
format Online
Article
Text
id pubmed-4305419
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher The Royal Society
record_format MEDLINE/PubMed
spelling pubmed-43054192015-02-06 A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using (18)F-FMISO-PET Rockne, Russell C. Trister, Andrew D. Jacobs, Joshua Hawkins-Daarud, Andrea J. Neal, Maxwell L. Hendrickson, Kristi Mrugala, Maciej M. Rockhill, Jason K. Kinahan, Paul Krohn, Kenneth A. Swanson, Kristin R. J R Soc Interface Research Articles Glioblastoma multiforme (GBM) is a highly invasive primary brain tumour that has poor prognosis despite aggressive treatment. A hallmark of these tumours is diffuse invasion into the surrounding brain, necessitating a multi-modal treatment approach, including surgery, radiation and chemotherapy. We have previously demonstrated the ability of our model to predict radiographic response immediately following radiation therapy in individual GBM patients using a simplified geometry of the brain and theoretical radiation dose. Using only two pre-treatment magnetic resonance imaging scans, we calculate net rates of proliferation and invasion as well as radiation sensitivity for a patient's disease. Here, we present the application of our clinically targeted modelling approach to a single glioblastoma patient as a demonstration of our method. We apply our model in the full three-dimensional architecture of the brain to quantify the effects of regional resistance to radiation owing to hypoxia in vivo determined by [(18)F]-fluoromisonidazole positron emission tomography (FMISO-PET) and the patient-specific three-dimensional radiation treatment plan. Incorporation of hypoxia into our model with FMISO-PET increases the model–data agreement by an order of magnitude. This improvement was robust to our definition of hypoxia or the degree of radiation resistance quantified with the FMISO-PET image and our computational model, respectively. This work demonstrates a useful application of patient-specific modelling in personalized medicine and how mathematical modelling has the potential to unify multi-modality imaging and radiation treatment planning. The Royal Society 2015-02-06 /pmc/articles/PMC4305419/ /pubmed/25540239 http://dx.doi.org/10.1098/rsif.2014.1174 Text en http://creativecommons.org/licenses/by/4.0/ © 2014 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
spellingShingle Research Articles
Rockne, Russell C.
Trister, Andrew D.
Jacobs, Joshua
Hawkins-Daarud, Andrea J.
Neal, Maxwell L.
Hendrickson, Kristi
Mrugala, Maciej M.
Rockhill, Jason K.
Kinahan, Paul
Krohn, Kenneth A.
Swanson, Kristin R.
A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using (18)F-FMISO-PET
title A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using (18)F-FMISO-PET
title_full A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using (18)F-FMISO-PET
title_fullStr A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using (18)F-FMISO-PET
title_full_unstemmed A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using (18)F-FMISO-PET
title_short A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using (18)F-FMISO-PET
title_sort patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using (18)f-fmiso-pet
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4305419/
https://www.ncbi.nlm.nih.gov/pubmed/25540239
http://dx.doi.org/10.1098/rsif.2014.1174
work_keys_str_mv AT rocknerussellc apatientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet
AT tristerandrewd apatientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet
AT jacobsjoshua apatientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet
AT hawkinsdaarudandreaj apatientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet
AT nealmaxwelll apatientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet
AT hendricksonkristi apatientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet
AT mrugalamaciejm apatientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet
AT rockhilljasonk apatientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet
AT kinahanpaul apatientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet
AT krohnkennetha apatientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet
AT swansonkristinr apatientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet
AT rocknerussellc patientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet
AT tristerandrewd patientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet
AT jacobsjoshua patientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet
AT hawkinsdaarudandreaj patientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet
AT nealmaxwelll patientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet
AT hendricksonkristi patientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet
AT mrugalamaciejm patientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet
AT rockhilljasonk patientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet
AT kinahanpaul patientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet
AT krohnkennetha patientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet
AT swansonkristinr patientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet