Cargando…
A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using (18)F-FMISO-PET
Glioblastoma multiforme (GBM) is a highly invasive primary brain tumour that has poor prognosis despite aggressive treatment. A hallmark of these tumours is diffuse invasion into the surrounding brain, necessitating a multi-modal treatment approach, including surgery, radiation and chemotherapy. We...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4305419/ https://www.ncbi.nlm.nih.gov/pubmed/25540239 http://dx.doi.org/10.1098/rsif.2014.1174 |
_version_ | 1782354230242181120 |
---|---|
author | Rockne, Russell C. Trister, Andrew D. Jacobs, Joshua Hawkins-Daarud, Andrea J. Neal, Maxwell L. Hendrickson, Kristi Mrugala, Maciej M. Rockhill, Jason K. Kinahan, Paul Krohn, Kenneth A. Swanson, Kristin R. |
author_facet | Rockne, Russell C. Trister, Andrew D. Jacobs, Joshua Hawkins-Daarud, Andrea J. Neal, Maxwell L. Hendrickson, Kristi Mrugala, Maciej M. Rockhill, Jason K. Kinahan, Paul Krohn, Kenneth A. Swanson, Kristin R. |
author_sort | Rockne, Russell C. |
collection | PubMed |
description | Glioblastoma multiforme (GBM) is a highly invasive primary brain tumour that has poor prognosis despite aggressive treatment. A hallmark of these tumours is diffuse invasion into the surrounding brain, necessitating a multi-modal treatment approach, including surgery, radiation and chemotherapy. We have previously demonstrated the ability of our model to predict radiographic response immediately following radiation therapy in individual GBM patients using a simplified geometry of the brain and theoretical radiation dose. Using only two pre-treatment magnetic resonance imaging scans, we calculate net rates of proliferation and invasion as well as radiation sensitivity for a patient's disease. Here, we present the application of our clinically targeted modelling approach to a single glioblastoma patient as a demonstration of our method. We apply our model in the full three-dimensional architecture of the brain to quantify the effects of regional resistance to radiation owing to hypoxia in vivo determined by [(18)F]-fluoromisonidazole positron emission tomography (FMISO-PET) and the patient-specific three-dimensional radiation treatment plan. Incorporation of hypoxia into our model with FMISO-PET increases the model–data agreement by an order of magnitude. This improvement was robust to our definition of hypoxia or the degree of radiation resistance quantified with the FMISO-PET image and our computational model, respectively. This work demonstrates a useful application of patient-specific modelling in personalized medicine and how mathematical modelling has the potential to unify multi-modality imaging and radiation treatment planning. |
format | Online Article Text |
id | pubmed-4305419 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-43054192015-02-06 A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using (18)F-FMISO-PET Rockne, Russell C. Trister, Andrew D. Jacobs, Joshua Hawkins-Daarud, Andrea J. Neal, Maxwell L. Hendrickson, Kristi Mrugala, Maciej M. Rockhill, Jason K. Kinahan, Paul Krohn, Kenneth A. Swanson, Kristin R. J R Soc Interface Research Articles Glioblastoma multiforme (GBM) is a highly invasive primary brain tumour that has poor prognosis despite aggressive treatment. A hallmark of these tumours is diffuse invasion into the surrounding brain, necessitating a multi-modal treatment approach, including surgery, radiation and chemotherapy. We have previously demonstrated the ability of our model to predict radiographic response immediately following radiation therapy in individual GBM patients using a simplified geometry of the brain and theoretical radiation dose. Using only two pre-treatment magnetic resonance imaging scans, we calculate net rates of proliferation and invasion as well as radiation sensitivity for a patient's disease. Here, we present the application of our clinically targeted modelling approach to a single glioblastoma patient as a demonstration of our method. We apply our model in the full three-dimensional architecture of the brain to quantify the effects of regional resistance to radiation owing to hypoxia in vivo determined by [(18)F]-fluoromisonidazole positron emission tomography (FMISO-PET) and the patient-specific three-dimensional radiation treatment plan. Incorporation of hypoxia into our model with FMISO-PET increases the model–data agreement by an order of magnitude. This improvement was robust to our definition of hypoxia or the degree of radiation resistance quantified with the FMISO-PET image and our computational model, respectively. This work demonstrates a useful application of patient-specific modelling in personalized medicine and how mathematical modelling has the potential to unify multi-modality imaging and radiation treatment planning. The Royal Society 2015-02-06 /pmc/articles/PMC4305419/ /pubmed/25540239 http://dx.doi.org/10.1098/rsif.2014.1174 Text en http://creativecommons.org/licenses/by/4.0/ © 2014 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Research Articles Rockne, Russell C. Trister, Andrew D. Jacobs, Joshua Hawkins-Daarud, Andrea J. Neal, Maxwell L. Hendrickson, Kristi Mrugala, Maciej M. Rockhill, Jason K. Kinahan, Paul Krohn, Kenneth A. Swanson, Kristin R. A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using (18)F-FMISO-PET |
title | A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using (18)F-FMISO-PET |
title_full | A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using (18)F-FMISO-PET |
title_fullStr | A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using (18)F-FMISO-PET |
title_full_unstemmed | A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using (18)F-FMISO-PET |
title_short | A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using (18)F-FMISO-PET |
title_sort | patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using (18)f-fmiso-pet |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4305419/ https://www.ncbi.nlm.nih.gov/pubmed/25540239 http://dx.doi.org/10.1098/rsif.2014.1174 |
work_keys_str_mv | AT rocknerussellc apatientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet AT tristerandrewd apatientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet AT jacobsjoshua apatientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet AT hawkinsdaarudandreaj apatientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet AT nealmaxwelll apatientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet AT hendricksonkristi apatientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet AT mrugalamaciejm apatientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet AT rockhilljasonk apatientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet AT kinahanpaul apatientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet AT krohnkennetha apatientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet AT swansonkristinr apatientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet AT rocknerussellc patientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet AT tristerandrewd patientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet AT jacobsjoshua patientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet AT hawkinsdaarudandreaj patientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet AT nealmaxwelll patientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet AT hendricksonkristi patientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet AT mrugalamaciejm patientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet AT rockhilljasonk patientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet AT kinahanpaul patientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet AT krohnkennetha patientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet AT swansonkristinr patientspecificcomputationalmodelofhypoxiamodulatedradiationresistanceinglioblastomausing18ffmisopet |