Cargando…

Longitudinal wave function control in single quantum dots with an applied magnetic field

Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function...

Descripción completa

Detalles Bibliográficos
Autores principales: Cao, Shuo, Tang, Jing, Gao, Yunan, Sun, Yue, Qiu, Kangsheng, Zhao, Yanhui, He, Min, Shi, Jin-An, Gu, Lin, Williams, David A., Sheng, Weidong, Jin, Kuijuan, Xu, Xiulai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4306960/
https://www.ncbi.nlm.nih.gov/pubmed/25624018
http://dx.doi.org/10.1038/srep08041
_version_ 1782354394388365312
author Cao, Shuo
Tang, Jing
Gao, Yunan
Sun, Yue
Qiu, Kangsheng
Zhao, Yanhui
He, Min
Shi, Jin-An
Gu, Lin
Williams, David A.
Sheng, Weidong
Jin, Kuijuan
Xu, Xiulai
author_facet Cao, Shuo
Tang, Jing
Gao, Yunan
Sun, Yue
Qiu, Kangsheng
Zhao, Yanhui
He, Min
Shi, Jin-An
Gu, Lin
Williams, David A.
Sheng, Weidong
Jin, Kuijuan
Xu, Xiulai
author_sort Cao, Shuo
collection PubMed
description Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots.
format Online
Article
Text
id pubmed-4306960
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-43069602015-02-06 Longitudinal wave function control in single quantum dots with an applied magnetic field Cao, Shuo Tang, Jing Gao, Yunan Sun, Yue Qiu, Kangsheng Zhao, Yanhui He, Min Shi, Jin-An Gu, Lin Williams, David A. Sheng, Weidong Jin, Kuijuan Xu, Xiulai Sci Rep Article Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots. Nature Publishing Group 2015-01-27 /pmc/articles/PMC4306960/ /pubmed/25624018 http://dx.doi.org/10.1038/srep08041 Text en Copyright © 2015, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-sa/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/
spellingShingle Article
Cao, Shuo
Tang, Jing
Gao, Yunan
Sun, Yue
Qiu, Kangsheng
Zhao, Yanhui
He, Min
Shi, Jin-An
Gu, Lin
Williams, David A.
Sheng, Weidong
Jin, Kuijuan
Xu, Xiulai
Longitudinal wave function control in single quantum dots with an applied magnetic field
title Longitudinal wave function control in single quantum dots with an applied magnetic field
title_full Longitudinal wave function control in single quantum dots with an applied magnetic field
title_fullStr Longitudinal wave function control in single quantum dots with an applied magnetic field
title_full_unstemmed Longitudinal wave function control in single quantum dots with an applied magnetic field
title_short Longitudinal wave function control in single quantum dots with an applied magnetic field
title_sort longitudinal wave function control in single quantum dots with an applied magnetic field
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4306960/
https://www.ncbi.nlm.nih.gov/pubmed/25624018
http://dx.doi.org/10.1038/srep08041
work_keys_str_mv AT caoshuo longitudinalwavefunctioncontrolinsinglequantumdotswithanappliedmagneticfield
AT tangjing longitudinalwavefunctioncontrolinsinglequantumdotswithanappliedmagneticfield
AT gaoyunan longitudinalwavefunctioncontrolinsinglequantumdotswithanappliedmagneticfield
AT sunyue longitudinalwavefunctioncontrolinsinglequantumdotswithanappliedmagneticfield
AT qiukangsheng longitudinalwavefunctioncontrolinsinglequantumdotswithanappliedmagneticfield
AT zhaoyanhui longitudinalwavefunctioncontrolinsinglequantumdotswithanappliedmagneticfield
AT hemin longitudinalwavefunctioncontrolinsinglequantumdotswithanappliedmagneticfield
AT shijinan longitudinalwavefunctioncontrolinsinglequantumdotswithanappliedmagneticfield
AT gulin longitudinalwavefunctioncontrolinsinglequantumdotswithanappliedmagneticfield
AT williamsdavida longitudinalwavefunctioncontrolinsinglequantumdotswithanappliedmagneticfield
AT shengweidong longitudinalwavefunctioncontrolinsinglequantumdotswithanappliedmagneticfield
AT jinkuijuan longitudinalwavefunctioncontrolinsinglequantumdotswithanappliedmagneticfield
AT xuxiulai longitudinalwavefunctioncontrolinsinglequantumdotswithanappliedmagneticfield